
Behavior-Based
Approach

Brainstormers Tribots

Neuroinformatics Group
University of Osnabrück
Albrechstr. 28
49069 Osnabrück

Tel: +49 541 969-2390
Fax: +49 541 969-2246

http://www.tribots.uos.de
Email: tribots@informatik.uni-osnabrueck.de

Sascha Lange, Christian Müller, Stefan Welker

http://www.tribots.uos.de
http://www.tribots.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Approach
architectural requirements

behavior-based

modular

hierarchically

feasibility requirements

purely reactive behavior should possible
(right now 90% still is purely reactive)

other approaches should not be excluded
(e.g. planning)

more a collection of (unrelated) ideas than a complete theory

"this is not a big theory of behavior specification, but a framework to
practically support the implementation. There is no abstract behavior
specification language. it is a collection of classes, you make use of or
derive your classes from and some „coding guidelines“ you should
respect."

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Skills / Behavior

getCmd

Gain / Loose Control

callbacks

Skill: needs parameters, e.g. target position
(DribbleToPos)

Behavior: no parameters (DribbleToGoal)

Skill / Behavior
+getCmd(Time&): DriveVector

+gainControl(Time&): void
+loseControl(Time&): void

+cycleCallback(Time&): void

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Example behavior
BDribbleBallToGoal

BDribbleBallToGoal::BDribbleBallToGoal()
 : Behavior("BDribbleBallToGoal"),
 skill(new SDribbleBallToPosRL())
{}

DriveVector BDribbleBallToGoal::getCmd(const Time& t)
throw(TribotsException) {

 //use information about the world to calculate
 //target position (in goal)
 FieldGeometry const& fgeom= MWM.get_field_geometry();
 Vec targetPos = Vec(0., fgeom.field_length / 2.);

 //use skill to produce drive commands
 skill->setParameters(targetPos, transVel);
 return skill->getCmd(t);
}

behavior uses
information about
world to
determine target
position (e.g.
avoid obstacles)

skill always needs
parameters to
calculate drive
command

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Specialization by Inheritance

Inheritance is used intensively, build
functionality layer by layer
(Matryoshka)

Example 1:

Dribble - Just the handling of the
ball, learned with NFQ

DribbleToGoal - adds obstacle
avoidance and sets target to goal

Example 2:

General defense behavior
(cover ball, drive to it if possible)

Field player behavior derived,
position and location to cover is
adapted to overall strategy

Neuro-
Dribble

Standard-
Dribble

Abstract-
Dribble

DribbleToPosAvoid-
Obstacles

DribbleToGoal-
AvoidObstacles

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Arbitration

Idea borrowed from BDI-architectures (MAS air-traffic controller)

Interface extension to behaviors (conditions)

Invocation Condition (IC)

A behavior can take over control for the first time, if IC is
fulfilled

Example EigenMove: ball possession close to side line

Commitment Condition (CC)

A behavior can keep control and does not have reached its
goal, if this condition is met

Example Eigenmove: ball possession

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Arbitration

Use IC and CC for the
generic arbitration of
behaviors

BDI-like Arbitrator

Belief: world model

Desire: drive command

Intention: active behavior

Arbitrator
-options : std::vector<Behavior*>

-intention : Behavior*

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Types of Arbitration
Highest Priority First (purely reactive, most
used)

Check CC of the active intention
(possibly remove intention and signal
loseControl)

Run through list of options up to the active
option (iff intention still active, otherwise up
to the end) and check IC's:

If IC is true make the currently
inspected option to the intention
(signal gainControl)

Active intention is then called by
getCmd()

intention
Option 1 Option 2 Option 3 Option 4

IC ✘ IC ✘ IC ✔ CC ✔

priority decreasing →

old intention

will become new intention

a
ct

u
a
l t

im
e
 o

f

e
xe

cu
tio

n

tim
e
 o

f
o
d
o
m

e
te

r

e
va

lu
a
tio

n

tim
e
 o

f
ca

m
e
ra

ta
ki

n
g
 a

 p
ic

tu
re

processing

image

detected objects

world

model

world

model

time

camera image

previous cycles

user

interface

strategy communi−
cation control

robot

1 cycle, 33.3 ms

driving command

driving command

sensory values

odometer

subsequent cycles

odometer sensory values

beliefs of other robots
and signals

Figure 2: One cycle of the clocked control loop. Due to latencies the sensory input originates from earlier
points in time and the actual execution of the driving command is as well delayed.

get command(Time t)
returns a suitable action to be executed by the control
loop at the point in time t

invocation condition(Time t)
true, iff this active behavior could become activated at
the point in time t

commitment condition(Time t)
true, iff this behavior could remain activated at the
point in time t

cycle callback()
this procedure is guaranteed to be executed once every
control cycle

Figure 3: The basic interface provided by each be-
havior.

other robots via the communication channel. Such predic-
tive models may be derived analytically from basic physical
laws and knowledge of the kinematics [X] or by making use
of machine learning algorithms for extracting or enhancing
these models from past experience [X]. Our models make
use of both, analytically and empirically gained knowledge.

The prediction can help in producing a state description
that comes close to fullfilling the important markov prop-
erty. Given such a description, only the present state and
the executed action determine the future of the system, the
history of states and actions being irrelevant. Given per-
fect predictive models the prediction of the belief state to
the time of execution comes close to a markovian state rep-
resentation. Given the ability to predict the state of the
world into the future, the stratgey is able to generate ac-
tions not only for some time ta with a < 0 corresponding
to the last measurement actually beeing already in the past
but also for the future time tb with b > 0 when the selected
action actually comes in effect. Only doing all calculations
in the strategy on the state of the world at the ’time of ex-
ecution’ allows for simpler programming of strategies, like
e.g. following a purely reactive paradigma.

10.2 Behavior
Concerning the strategy we follow a behavior based ap-

proach that should allow to use and combine purely reactive
behaviors as well as deliberative building blocks and learned
submodules. To achieve this we have decided to pragmat-

ically combine the best of both worlds, ”new AI” with it’s
behavior focused, highly reactive subsumption architecture
and ”classical AI” with its explicit shared world model, plan-
ning and deliberative behaviors, into a hierarchical frame-
work.

The result has been a combination of a BDI-like control
arbitration with slim modules that calculate both their ap-
plicability and desired actions. As in the subsumption ap-
proach, the complex behavior of the whole system is made
up by the interaction of a number of relatively simple be-
haviors modules each realizing only a small sub-strategy.
These simple behaviors can be compared to the assignments
a coach would give his players. As argued above, a coach
would explain the team strategy using task decomposition
e.g. in form of describing distinctive ’situations’ and desired
/ correct actions. This is very similar to the underlying idea
of ’behaviors’ in our framework. Each behavior is tagged
with a condition confining the situation it should be acti-
vated in (see fig. 3) . Once activated, it generates actions
according to a local sub-strategy and stays activated until
the situation becomes to ’unsimilar’ or a situation fullfill-
ing / triggering the activation condition of a higher priority
behavior is reached (see aglo. 1).

Algorithm 1 The ”highest priority first” arbitration
scheme.
Require: intention != 0

if not intention.commitment condition(t) then
intention ⇐ emergency stop

end if
for i = 0 to options.length() do

if options[i] = intention then
break

end if
if options[i].invocation condition(t) then

intention ⇐ options[i]
break

end if
end for

Ensure: intention != 0

The most important part of each behavior is a routine that
generates and returns a motor command when called (see fig.
3). Remember, to do this, the behaviors are not allowed to
access the sensors directly but to interface to the abstracted
state description encapsulated in the shared world model.
Besides this main routine, each behavior provides facilities
that the arbitration may use to decide whether or not to

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Types of Arbitration

intention
Option 1 Option 2 Option 3 Option 4

IC ✘ IC ✘ IC ✔ CC ✘

priority decreasing →

old intention

will become new intention

execute a particular behavior. The invocation condition cal-
culated by a behavior should be true, if the behavior is able
to generate a meaningful action for the present state of the
world and could take over the control of the robot from the
presently active behavior now. The commitment condition
of an active behavior should be true, if it is able to continue
to generate meaningful actions. For example, the invocation
condition of a dribbling behavior would become true, when
the robot gains possesion of the ball. Its commitment con-
dition would remain true, as long as the robot controls the
ball and would become false when the robot has lost poss-
esion or reached some goal state. The call back function is
guaranteed to be called exactly once every control cycle by
the arbitration procedure. This mechanism could be used
by the behavior to do necessary calculations independent of
whether or not the behavior is active (e.g. in order to ob-
server transitions of the game state or to constantly update
a plan).

Behavior arbitration.
The whole arbitration procedure is loosely inspired by

the architecture of OASIS (VERWEIS). In terms of BDI-
architectures, an arbitrator manages a list of options (here:
behaviors) that it may execute. The selected option be-
comes the present intention and may be followed several
control cycles, until the intention changes again. The ar-
bitration procedure uses the conditions of the options to
decide whether to keep or to replace the present intention
by another hopefully more suitable option. We do provide
two standard arbitration schemes to be used for handcrafted
strategies: 1. high priorities first, 2. finish plan first.

The first arbitration scheme (see algo. 1) assigns each
option a unique priority simply depending on the ordering
of the list of options. The option with the highest priority
and a fulfilled invocation condition becomes activated and
stays activated as long its commitment condition is true and
no higher priority option has a true invocation condition.

Algorithm 2 The ”finish plan first” arbitration scheme.

Require: intention != 0
if not intention.commitment condition(t) then

intention ⇐ emergency stop
for i = 0 to options.length() do

if options[i].invocation condition(t) then
intention ⇐ options[i]
break

end if
end for

end if
Ensure: intention != 0

The second arbitration scheme uses a priotirized list of
options, too for selecting which option to invocate initially,
but then sticks to the once-selected behavior until its com-
mitment condition becomes false. This means, an intention
never gets interrupted by another option with higher prior-
ity but has to intentionally give away the control, e.g. after
finishing its plan or reaching some goal condition.

The power of this simple architecture becomes improved
significantly by adding two more flexibility-increasing com-
ponents: A) behaviors may execute other behaviors in order
to form a more complex behavior and B) the arbitration
schemes are implemented as behaviors themselves. This al-

lows the behavior-designer to mix ”basic” behaviors (often
called ”skills”) with complex, arbitrated behaviors in a hi-
erarchical fashion using the standard, customized or even
learned arbitration schemes.

Within this framework it is simple to implement flat subsumption-
like arbitration schemes, classical decision trees or any other
useful arbitration. Another advantage is the easy integration
of machine learning or e.g. decision making modules solving
a smaller subtask into an existing soccer-playing agent. Be-
sides our research code, the whole title-winning competition
strategy, too, is implemented in a modular fashion only us-
ing the standard arbitration schemes. Therefore, it is very
easy to exchange e.g. the different ball-stealing skills or even
the whole standard-situation strategy inbetween two games
or even within a half-time break.

10.3 Communication
client server architecture -¿ why
master robot, that makes decisions. every robot may be-

come master.

10.4 Implementing the Roles
Rollen. a) Rollenwechsel 1)statisch 2) dynamisch b) ver-

halten
all robots are equal

10.5 Hysteresis to prevent oscillations at deci-
sion boundaries

10.6 Coordinating team behavior via commu-
nication

10.7 Coordinating movement on a low level
via implicit coordianation

10.8 Preparing for unreliable communication
failsafe formulation. fallback to most important roles.
Ev. Definitionen: Implizite Koordination, Movement Pat-

terns, failsafe, etc...
- welche informationen sind da / nicht da? (weltmod-

ell, zitat alle sl paper) eingeschraenkte wahrnehmung. ball
wichtigstes objekt-¿ meiste aufwand bisher (prediction +
ECMRpaper + 3d isocrob paper 2007) hindernisse (im WM
getrackt, zitat PCA-Paper + Palm).

- darstellung der zeitlichen abhaengigkeiten und notwendigkeiten.
praediktives weltmodell. alle entscheidungsfindung arbeitet
auf einem virtuellen zustand zum zeitpunkt der handlungsaus-
fuerhung (ca. 100 ms in der Zukunft und bis zu 200ms nach
der aktuellsten fuer diese Entscheidung herangezogenen Sen-
sormessung) -¿ entscheidungsfindung abstrahiert also voel-
lig von den zeitlichen zusammenhaengen -¿ erleichterung der
arbeit.

- wie sieht die generelle teamstruktur aus? (lokale entscheidungen-
¿zentrales teamcontrol, Kommunikation, warum so?) client
server ueber peer to peer. Vorteil: klarer ablauf, zentrale in-
formationshaltung, einfachere fusion. Nachteil: mehr kom-
munikation noetig, groessere verzoegerung, faellt der kon-
takt aus-¿ gar keine kommunikation mehr.

- alle roboter sind gleich
- eingeschraenkte kommunikation, ausfaelle, roboteraus-

faelle, wechsel
- Entscheidung: alle relevanten Entscheidungen werden

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Example: Goalie

BGameStopped
BGoaliePenalty
BGoalieGetAwayFromGoalPosts
BGoaliePositioningChipKick
BGoalieRaisedBall
BGoalieFetchBallNearGoalPost
BGoalieAttackBall
BGoalieFetchBall
BGoaliePositioning
BGoaliePatrol

Goalie

Goalie, plain list
(highest priority first)

de
cr

ea
si

ng
 p

ri
or

ity

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Types of Arbitration
Sequence (used for complex behaviors)

intention Option 1 Option 2 Option 3 Option 4

only check IC of next option in list

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Types of Arbitration
Sequence (used for complex behaviors)

Generalized Sequence

Node has to be activated / can be skipped

Present node cedes control / subsequent node grabs
control

intention Option 1 Option 2 Option 3 Option 4

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Nesting
Making this whole thing interesting: Nesting

Arbitrators (BDIBehavior) are Behaviors themselves

➡ Behavior Hierarchy

intention Behavior Behavior BDIBehvior Behavior

intention Behavior BDIBehavior BDIBehavior Behavior

LeftDefender

HasBal

Skill
+getCmd(Time&): DriveVector

+gainControl(Time&): void
+loseControl(Time&): void

+cycleCallback(Time&): void

Behavior
+checkInvocationCondition(Time&): bool

+checkCommitmentCondition(Time&): bool

BDIBehavior
-options : std::vector<Behavior*>

-Intention : Behavior*

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Example: Decision Tree
Stack Arbitrators (binary, n-ary, whatever)

Highest Priority first Arbitration

nodes are arbitrators

leaves are behaviors

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Analogy to Finite State Machines

All our hierarchies can in principle be translated into an
equivalent FSM

you would have to spread / C&P IC and CC among the
transitions

However it's a different way of thinking

we assume a situation

history is not important

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Think in „Situations“
In this situation,
the only correct
decision is to
shoot the ball

(ok, obviously, I would
have tried to dunk it,
but trying to score is
the right decision ;-)

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Think in „Situations“

How you got
there, is not
important.

Whether you
just dribbled
there, ...

3

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

3

!

Think in „Situations“

How you got
there, is not
important.

Whether you
just dribbled
there, ...

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

... or you ran a
really complex
set play with
several screens
and passes...

1

U CLA - Cut nach Pass Entry

4 5 23

1

Doppelblock

4
5

23

Think in „Situations“

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

1

Downscreen

4

5

2

3

1

Staggered

4

5

2

3

Think in „Situations“
... or you ran a
really complex
set play with
several screens
and passes...

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

1

Pick'n'Roll

4

5

2

3

Think in „Situations“
... or you ran a
really complex
set play with
several screens
and passes...

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

1

Pick'n'Roll

4

5

2

3

!

Think in „Situations“
... or you ran a
really complex
set play with
several screens
and passes...

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Think in „Situations“
... the correct
decision will still
be the same.

Shoot it.

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Think in „Situations“
Basketball
players try to
keep decisions
as simple as
possible.

They train and
find solutions for
simplified
„situations“
in „break-down
drills“.

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Think in „Situations“
So don‘t think
about the history
or state
transitions, just
decide what‘s
the best action
in the present
situation, as the
smart players
do ;-)

> it‘s an MDP ;-)

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Analogy to Finite State Machines

Different way of thinking:

no transitions are specified

practical benefits:

simply insert and delete nodes

recurring transition conditions centrally formulated

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Analogy to Finite State Machines

Different way of thinking:

no transitions are specified

practical benefits:

simply insert and delete nodes

recurring transition conditions centrally formulated

 ?

?

?

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

BDI Hierarchy / FSM

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

BDI Hierarchy / FSM

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Transitions vs. Stuttgart

BApproachBallAfterNonexecutedStandard

BApproachBallDirectly

BApproachBallDirectlyAfterStandard

BApproachBallFromBehindPointingAwayOwnGoal

BApproachBallFromBehindPointingToGoal

BApproachBallFromBehindPointingToMiddle
BAvoidGoalieAreaBBoostBallToGoal

BCounterAttackConditioned

BDefendBallConditioned

BDoubleTeamConditioned

BDribbleBallToGoal

BEmergencyStop

BGameStopped

BInterceptBall

BPostOpponentStandardSituation

BPreOpponentStandardSituationNew

BPreOwnIndirectStandardSituation

BProtectGoalConditioned BStayInsideArea
BStuckDistanceShooter

BSupportDoubleTeamMiddleConditioned

BSupportNearBallConditioned

BVolleyApproachAfterOwnSetPlay

SupportDoubleTeamSidelineConditioned

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Conclusion
Behavior based

Generic arbitration schemes

Behavior hierarchy using nested arbitrators

Most behaviors are reactive

Cut „situations“ from the state space instead of
thinking in transition graphs

more easily separate individual behavior and plug
in a RL training setup

more easily to integrate new behavior in an
existing strategy

http://www.tribos.uos.de
http://www.tribos.uos.de

