
Architecture

Brainstormers Tribots

Neuroinformatics Group
University of Osnabrück
Albrechstr. 28
49069 Osnabrück

Tel: +49 541 969-2390
Fax: +49 541 969-2246

http://www.tribots.uos.de
Email: tribots@informatik.uni-osnabrueck.de

Sascha Lange, Christian Müller, Stefan Welker

http://www.tribots.uos.de
http://www.tribots.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Cooperative MAS-Attack:

NeuroPositioning 7vs8

TRIBOTS

98 99 00 01 02 03 04 05 06

3D

NeuroKick

NeuroIntercept

NeuroGoToPos

NeuroPenalty

1vs1

NeuroAttack

3vs4 NeuroScore CBRIntercept

NeuroApproach

(Simulation)
GridIntercept

(Simulation)

NFQApproach

(Real)

NFQControl

(Real)

evoVision

Virtual

Neuro-Sensors

NeuroAttack

2vs2

NeuroDribble

NeuroHoldBall
NeuroAttack

7vs8

07 08 09

NFQDribble

(Real)

3D

Vision
Neuro

Prediction

twobots

NFQDribble

NeuroKick06

NeuroHassle

RSPSAApproach

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Relevant Design Goals
Research goal: Value-function-based
Reinforcement Learning (RL) on real systems

Markov Decision Process (MDP)

discrete time steps

state representation with markov property

As little restrictions as possible on behavior

reactive, subsumtion-like behaviors

planning

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Control Loop

Control Loop like in Closed Loop Control

discrete time steps

sequential processing of the modules

start of cycle synchronized to camera

sensors
world
model

strategy
comm. /

user
interface

robot
control

time1 cycle,
33,3 ms

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

General Architecture

the world model (WM) is the
central module of the
architecture, the single point of
storage for all information

all modules access the world
model to get and store
information

no module has access to
another module (besides the
WM)

all modules have abstract
interfaces, implementations are
exchangable at runtime
through abstract factory-pattern

Environment (Soccer Server)

Hardware
Cam
eras

Enc
oder

Mot
ors

Kic
ker

Sensor
Processing

Robot
Control

Decision Making

Commun
ication /

UI

World Model

Drivers

• Sensor Fusion
• Self Localiazation
• Predictive Movement

Models

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Camera: ~70 ms

Drive Unit: ~40-100 ms

Encoder / Odometry: ~15 ms

WLan: ~300 ms

Delays

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Delays in relation to one cycle

time
1 cycle, 33,3 ms

action

selected

~70 ms

~15 ms

40-100 ms < 1000 ms

image
captured

odometry
integrated

first
reation

on action

target
velocity
reached

robot moves up to 40cm during this time!

time gap: ~150 ms

information is more than 70ms old,
when decision is made

decision won‘t have any measurable
physical effects for up to100 ms

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Prediction
use predictive models to bridge the time gap

the extrapolated state resembles markov property as
closely as possible

all decisions are made on this extrapolated state
information

thus, decision making is done „delay free“ (ideally)

time
1 cycle, 33,3 ms

predicted
state

prediction

use predicted state
to make decision

fusion

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Predictive World-Model

all prediction is encapsulated in a „predictive world-model“

all information and all querries are timestamped

WM is able to „continously“ extrapolate the state into the
future

Sensor Fusion & Models used in the World-Model

Self-localization (minimizing an error using gradient
descent)

Ball-model (robust regression / multiple hypothesis
checking)

Self-model (robust regression / MLP)

Teammate / Opponent-Model (shared WM, robust
regression)

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Self-Localization

RL for Robotic Soccer Sensor Fusion Learning Summary

Calculating the robot’s pose

! General idea: use the white lines on the field and compare what you
see with what you expect to see

! Efficient but error-prone detection of white lines in the image

! Error minimization:

minimize
!p,φ

E :=
n∑

i=1

err(d(!p +

(
cos φ − sin φ
sin φ cos φ

)
!si))

Roland Hafner, Sascha Lange, Martin Lauer Design and Concepts of Autonomous Soccer Playing Robots

Gradient descent with Rprop:

Odometry
Driving Commands

Camera Images
Fusion

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Ego-Motion

RL for Robotic Soccer Sensor Fusion Learning Summary

Robot Motion Model

Assuming constant linear and angular velocities, the robot can:

! turn on a spot

! drive on a straight line without turning

! drive on a circular trajectory while turning

φt+τ = φt + ωt · τ mod 2π

%pt+τ =

%pt + %u · τ if ωt = 0

%pt + 1
ωt

Rφt

(
sin(ωtτ) cos(ωtτ)−1

1−cos(ωtτ) sin(ωtτ)

)
R−φt%ut if ωt "= 0

ωt+τ = ωt

%ut+τ = Rωtτ%ut

Roland Hafner, Sascha Lange, Martin Lauer Design and Concepts of Autonomous Soccer Playing Robots

RL for Robotic Soccer Sensor Fusion Learning Summary

Velocity Estimator

estimating the velocity from observations (pi,x , pi,y ,φi , ti):

ω =
n

∑n
i=1(φi ti)−

∑n
i=1 ti

∑n
i=1 φi

n
∑n

i=1 t2
i + (

∑n
i=1 ti)2

n 0
∑

si
∑

ci

0 n −
∑

ci
∑

si∑
si −

∑
ci

∑
(s2

i + c2
i) 0∑

ci
∑

si 0
∑

(s2
i + c2

i)

x0

y0

ux

uy

 =

∑
pi,x∑
pi,y∑

(sipi,y − cipi,y)∑
(cipi,x + sipi,y)

with si = sin(ωti)
ω and ci = cos(ωti)−1

ω

Solving this equation with respect to ux , uy yields the velocity estimate.

Roland Hafner, Sascha Lange, Martin Lauer Design and Concepts of Autonomous Soccer Playing Robots

Alternative: Time series prediction, MLP trained to the transition model.
(similar setup as in „Predicting away the delay“, FU-Fighters)

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Ball Motion
sequence of linear motion
models

ridge regression to estimate
parameters

collision detection

detection of the ball being
chipped

switch to 3D-motion model,
if 2nd camera is available

In contrast to Kalman filtering, the direct estimator does not need any as-
sumption of the noise level by which the observed ball positions are influenced.
Hence, we get estimates that are more robust with respect to badly chosen vari-
ance parameters.

In the case of very few observations, i.e. if n is small, the estimates from
equation (4) and (5) become very noise. Although the estimates of p0 and v are
unbiased, the length of v is expected to be larger than zero even if the ball is
not moving, since noisy observations always cause a velocity vector that differs
from zero. E.g. if we assume a non-moving ball and estimates for pt that are
independently identically distributed according to a Gaussian the estimates of
v will also be distributed Gaussian with mean zero due to (5). But the length of
v is not expected to be zero since ||v||2 is χ2-distributed which is a distribution
with positive expectation value.

To reduce the effect of noisy observations in the case of small n we can replace
the standard linear regression approach shown in equation (3) by a ridge regres-
sion with an extra weight decay parameter for the velocity parameter while the
position estimate remains unregularized. The minimization task now becomes:

minimize
p0,v

1

2

n
∑

i=1

||p0 + v(ti − t0) − pi||
2 +

λ

2
||v||2 (6)

with λ > 0 chosen appropriately.
In this case, solving (6) leads to:

p0 =
(λ +

∑n
i=1

(ti − t0)2)
∑n

i=1
pi −

∑n
i=1

(ti − t0)
∑n

i=1
((ti − t0)pi)

n(λ +
∑n

i=1
(ti − t0)2) − (

∑n
i=1

(ti − t0))2
(7)

v =
n

∑n
i=1

((ti − t0)pi) −
∑n

i=1
(ti − t0)

∑n
i=1

pi

n(λ +
∑n

i=1
(ti − t0)2) − (

∑n
i=1

(ti − t0))2
(8)

Comparing (5) and (8) shows the difference: adding λ > 0 in the denominator
leads to a preference of smaller velocities and thus a more reliable estimate in
the case of few observations.

The quality of the position and velocity estimate depends on the integration
length, i.e. on the number of observations n which are used for the calculation:
if n is small the estimates are heavily influenced by noise, if n is large the
assumption of the ball rolling with approximately the same velocity is hurt,
especially when the ball collides with an obstacle or is kicked by a robot.

3.3 Dealing with Changes of the Ball Movement

The movement of the ball sometimes changes due to (a) the ball is decelerated
when it rolls freely across the field or (b) the ball collides with an obstacle or is
kicked or pushed by a robot. In the former case the velocity changes only slowly
and the assumption of constant velocity is appropriately fulfilled for a moderate
number of observations. In the latter case, this assumption is violated anyway.
Hence, we have to detect these situations and deal with them in a special way.

Figure 2 shows a situation in which the ball is reflected by an obstacle: the
observations A, B and C have been made while the ball was rolling into the
direction of the obstacle while the observations D, E and F are made after the
collision with the obstacle. Obviously, the entire movement cannot be described
by a linear model, but it is possible to describe the movement from A to C and
the movement from D to F as two different consecutive linear movements. Thus,
we are faced with the problem of detecting the point of change between the first
and the second movement.

C

D

E
F

A

B D’

E’

F’

Figure 2. Collision of the ball with an obstacle: the ball is reflected and changes its
direction jerkily. The circles show the positions at which the ball was observed by
the robot subsequently (temporal order A-B-C-D-E-F). The points D′, E′ and F ′

are predicted ball positions assuming a movement with constant velocity using the
observations A,B and C.

Having found such a change point, the hitherto model of the ball movement
becomes invalid and has to be replaced by the new one. Thereto we have to
recompute the motion model only with observations that have been made after
the change point, i.e. we have to remove older observations.

To detect change points in the ball movement we propose a test that always
checks whether a new observation fits to the model used so far. If the distance
between the predicted ball position and the observed position is larger than
a pre-defined threshold we mark this observation as possibly being a change
point. But not all observations with large prediction errors are change points.
It may happen that due to misdetections of the ball or errors in the robot self-
localization an observation may erroneously look as a change point although the
ball movement is not interrupted. Thereto we define a suspicious observation
only as change point if the succeeding observation is also suspicious.

In the example given in figure 2 this would mean: the observations A,B
and C match the current motion model and therefore are not at all change
points. Comparing observation D with the corresponding prediction D′ exhibits
an error, which is not large enough to call observation D being suspicious. In
contrast, the error between observation E and prediction E′ is reasonable and

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600 1800

Figure 5. Ball estimation when the ball was rolling across the field while the robot
was standing. The diagram shows the projection of the ball position (dashed line) onto
the x-axis of the field coordinate system and the velocity estimate (solid line), also
projected onto the x-axis of the field coordinates. The horizontal axis of the diagram
indicates the time in milliseconds. Since the ball rolls freely, the velocity decreases due
to friction.

Reset

Collision

−5

−4

−3

−2

−1

 0

 1

 2

 3

 0 100 200 300 400 500 600 700 800 900

Figure 6. Case of the ball colliding with an obstacle. The dashed line shows the position
of the ball, the solid line the estimate of ball velocity. The horizontal axis indicates the
time in milliseconds. Both, the position and velocity are projected onto the x-axis of
the field coordinate system.

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Shared WM

client-server architecture

full communication cycle up to 300ms

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Shared WM

information shared with the individual robots

position of the ball

for each of the teammates

position, velocity

occupancy grid

whiteboard (plain text, unstructured, unrestricted)

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Other robots‘ motion
we can not discriminate obstacles visually

tracking by establishing correpsondences between
frames minimizing some criterion on the movement of the
indistinguishable objects

same model as for the ego-motion

communicated positions of teammates are matched to
cloeset obstacles (iff non-ambigious) and used for
identification only

history of object positions new measurement

standard criterion from
feature point tracking

for matching
indistinguishable objects

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Tools
Tribotsview

2 Simulators (team behavior / physically
more adequate simulation of drive unit)

Teamcontrol

ColorTool / Camera Calibration

Tacticsboard - modifiable tactics

iPhone Control

If you‘re interested in one tool, please ask...

http://www.tribos.uos.de
http://www.tribos.uos.de

Brainstormers Tribots, Neuroinfromatics Group, Universisty of Osnabrück, 2008 www.tribos.uos.de

Conclusion

Sequential processing in control loop

All information stored in World-Model

No direct communication between other
modules besides World-Model

Prediction to „remove“ delay

Markov Decision Process

http://www.tribos.uos.de
http://www.tribos.uos.de

