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Abstract—Incomplete or imprecise models of control systems
make it difficult to find an appropriate structure and parameter
set for a corresponding control policy. These problems are
addressed by reinforcement learning algorithms like policy gra-
dient methods. We describe how to stabilise the policy gradient
descent by introducing a regularisation term to enhance the
episodic natural actor-critic approach. This allows a more policy
independent usage.

We used the resulting algorithm to optimise a z-transformed
rational function representing the control policy. This representa-
tion facilitates simultaneous optimisation of the control structure
and its parameters in time space and can be analysed in terms
of control theory to predict the control behaviour for arbitrary
scenarios.

Furthermore we present a solution to the general problem
of finding a initial parameter set with the help of a single
demonstrated trajectory. The approach is evaluated on a cartpole
simulation for demonstrating the expressiveness of the policy.
Furthermore, a real soccer robot scenario demonstrates the
ability of the proposed approach to deal with real world scenarios.

I. INTRODUCTION

Most existing approaches for learning controllers without
process knowledge make use of neural networks, in order
to approximate the transfer function. Hence, they have the
drawback of being black boxes and the behaviour is unknown
for new environments.

Classical control structures like a PID controller have the
advantage that their behaviour is well known but a system
model is needed in order to find optimal parameters. Especially
higher control structures are difficult to set up for systems
where only a rough approximation can be found. Thus, an
exact model is needed for an optimal design. This leads to the
problem of finding the optimal control structure and gathering
optimal parameters for this structure.

This paper presents a new approach that overcomes these
problems by learning the parameters for a z-transformed
rational function, which is used as a control policy. This
general representation allows learning the control structure and
optimising its parameters at the same time. The change of pa-
rameters in z-space can influence the control structure as well
as its parameters in the time space. Furthermore, z-transformed

functions are very well known in control theory, which offers
diverse and well-established methods for analysing.

The z-space transfer function is represented by time shifting
states, weighted by its parameters, and leading to a state
machine. In order to simplify the parameter determination, the
initial computation is inspired by the training of echo state
networks [1], which train their weights by teacher forcing:
The past controller outputs can be seen as inputs for the time
shifting states of the z-space policy, which leads to a system of
equations, solvable by linear regression, and determined by a
sample trajectory. We propose this new imitation approach to
find initial parameters for a policy in z-space without having
a model of the system.

This allows to apply policy gradient methods to improve
the policy. In this context we show that the most valuable
policy gradient algorithm – the episodic natural actor-critic –
can benefit by a regularisation term. This term allows using
the algorithm more independently of the target policy.

The approach is evaluated through a standard use case –
a cartpole simulation – to show the expressiveness of this
policies and a RoboCup soccer robot ball interception scenario
to show that this approach is robust against noisy sensor data.
The evaluation will show that this improvement step is able
to find a local optimum for policy parameters with respect to
a given reward function.

The remainder of this paper is organised as follows. In
Section II we present the episodic natural actor-critic learning
algorithm, Section III shows the z-policy representation and
how to apply policy gradient algorithms. Section IV explains
how we improved the actor-critic algorithm by a regularisation
term, the results of the two experiments is presented in
Section V followed by the final conclusions in Section VI.

II. LEARNING ALGORITHM

This section introduces the episodic natural actor-critic
algorithm (eNAC), which is a policy gradient approach, and
belongs to the class of reinforcement learning algorithms. We
make use of this algorithm in order to optimise the parameters
of a control policy. Before introducing policy gradient meth-
ods, we first define some general assumptions. Afterwards we



describe the basics of policy gradient algorithms leading to the
eNAC algorithm. Finally the policy gradient for a normally
distributed policy is determined.

A. Reinforcement Learning Framework

We assume the state probability distribution shown in Equa-
tion 1. It characterises the probability of reaching a new state
under the assumption of a specific action ak in a state xk:

xk+1 ∼ p(xk+1|xk, ak) (1)

For policy gradient methods all actions of the agent are
generated by a probabilistic policy to facilitate exploration:

ak ∼ πθ(ak, xk) (2)

The index θ denotes the parameters of the policy. Furthermore,
the value function and state-action function are given by the
Bellman equations [2]:

V π(x) = r(x) + α
∑
x′

p(x′|x, π(x))V π(x′) (3)

Qπ(x, a) = α
∑
x′

p(x′|x, a)V (x′) (4)

where α denotes the discount factor for problems with un-
limited horizon. The goal of policy gradient methods is to
optimise the expectation of the cumulated reward function

J(θ) =
1

αΣ
E

{
H∑
k=0

αkrk

}
(5)

The term αΣ denotes a normalisation factor to ensure that∑H
k=0

αk

αΣ
= 1. Note that we asume a value of αk = 1 for all

further equations and experiments of this paper. An alternative
representation of Equation 5 computes this expectation as the
integral over the state distribution and the integral over all
actions of the policy by

J(θ) =

∫
X

dπ(x)

∫
A

πθ(a, x)r(a, x)dxda (6)

The next sections use this equation to derive the policy
gradient for the parameters θ.

B. REINFORCE Policy Gradient

In order to optimise the parameters of a policy, we have
the goal to maximise the cumulated reward J . The reward
expectation over all trajectories τ of Equation 6 depends on
the parameters θ of the chosen policy and can be rewritten as

J(θ) =

∫
T

pθ(τ)r(τ)dτ (7)

where r(τ) denotes the cumulated rewards of a trajectory and
pθ(τ) the probability distribution of a specific trajectory. By

deriving J(θ) with respect to the policy parameters, we get
the policy gradient as shown in [3]:

∇θJ(θ) =

∫
T

∇θpθ(τ)r(τ)dτ (8)

=

∫
T

pθ(τ)

pθ(τ)
∇θpθ(τ)r(τ)dτ (9)

=

∫
T

pθ(τ)∇θ log pθ(τ)r(τ)dτ (10)

= E{∇θ log pθ(τ)r(τ)} (11)

While the reward function is not influenced by the policy
parameters, it is sufficient to compute only the gradient of
the trajectory distribution function

pθ(τ) = pθ(x0)

H∏
k=0

p(xk+1|xk, ak)πθ(ak, xk) (12)

where x0 represents the fixed start state of all trajectories.
Computing the logarithm of Equation 12 results in

log pθ(τ) = log pθ(x0)+
H∑
k=0

log p(xk+1|xk, ak)πθ(ak, xk) (13)

∇θ log pθ(τ) =

H∑
k=0

φk (14)

where φk = ∇θ log πθ(xk, ak). Bringing everything together
results in the gradient estimation g:

g = ∇θJ(θ) = E{∇θ log πθ(τ)r(τ)} (15)

≈ E

{(
H∑
k=0

φk

)(
H∑
l=0

r(al, xl)

)}
(16)

The update rule for the parameter set is given by θn+1 =
θn + αg, where α denotes the learning rate.

C. Variance Reduction by Introducing a Baseline
Usually the REINFORCE policy gradient has a high vari-

ance, which requires many trials in order to find a suitable
estimation. This drawback can be attenuated by introducing a
baseline, which does not bias the gradient estimation, because
the integral over the differentiated trajectory distribution is
always zero:∫

T

pθ(τ)∇θ log pθ(τ)dτ =

∫
T

∇θpθ(τ)dτ = ∇θ1 = 0 (17)

⇒
∫
T

pθ(τ)

(
H∑
k=0

φk

)
bdτ = 0 (18)

Thus, a baseline b can be used to minimise variance of the
gradient estimation:

∇θJ(θ) = E{
H∑
k=0

φ(r(a, x)− b)} (19)

⇒ g =

∫
T

pθ(τ)

(
H∑
k=0

φk

)(
H∑
l=0

rl − b

)
dτ (20)



Due to Equation 18, the baseline may be chosen arbitrary. With
the goal is to minimise the variance of the gradient estimation,
the optimal baseline for a gradient element i can be calculated
by adopting the variance definition:

σ2
i = E{g2

i } − (∇θiJ)
2 (21)

⇒ min
bi

σ2
i ≥ E{min

bi
g2
i } − (∇θiJ)

2 (22)

with a minimised variance by solving g2
i for the minimum:

g2
i =

(∫
T

pθ(τ)

H∑
k=0

φk

(
H∑
l=0

rl − bi

)
dτ

)2

(23)

⇒ bi =

∫
T
pθ(τ)

(∑H
k=0 φk

)2 (∑H
l=0 rl

)
dτ∫

T
pθ(τ)

(∑H
k=0 φk

)2

dτ
(24)

This estimation of the baseline may still be improved by
making use of the knowledge of the performed exploration,
which leads finaly to the eNAC algorithm.

D. Episodic Natural Actor-Critic

As shown by Sutton et al. [4], a compatible function
approximation exists for Qπ(x, a)− bπ(x):

Qπ(x, a)− bπ(x) ≡ fπw(x, a) = φTw (25)

This function approximation can be seen as a critic represent-
ing an advantage function of an action a in state x. Note
that the compatible function approximation does not equal
Qπ(x, a)−bπ(x), but in terms of Equation 20 both expressions
are compatible. In order to get an estimation, we insert the
compatible function approximation of Equation 25 into the
Bellman Equation. It estimates the parameters of the critic

Qπ(a, x) = φTw + V π(x) (26)

= r(x, a) + α

∫
X

p(x′|x, a)V π(x′)dx′ (27)

The class of actor-critic algorithms builds on this equation.
Actor-critic algorithms compute the gradient with a function
approximation for the value function V π(x) through weighted
basis functions V π(x) = φ(x)T v. A detailed description of
this class of algorithms can be found in Peters et al. [5].

For a good estimation of V π(x), basis functions have
to be known, where a suitable linear combination with v
can be found. In most cases, we do not know, which basis
functions qualify for a good approximation. In the episodic
case, however, we can avoid this by summing up Equation 27
over the whole episode:

H∑
k=0

αkf
π
w(xk, ak) =αH+1V

π(xH+1)+

H∑
k=0

αkr(xk, ak)− V π(x0) (28)

The term aH+1V
π(xH+1) disappears for discounted learning

as well as for the episodic case, where r(xH , aH) is the last

reward. Thus, every roll-out results in a equation with the
parameter vector w. This leads to a linear regression problem
with the start state J0 = V π(x0):

H∑
k=0

αkφk
Tw + J0 =

H∑
k=0

αkr(xk, ak) (29)

⇒
[
w
J0

]
= (ΨTΨ)−1ΨTR (30)

with

Ψi =
[∑H

k=0 αkφ
T
k , 1
]

(31)

R =

H∑
k=0

αkr(xk, ak) (32)

Note that the matrix (ΨTΨ) is only invertible if least dimw+1
linearly independent vectors exist.

1) Relation between Compatible Function Approximation
and Gradient: We derived an estimation of the parameter vec-
tor w for a compatible function approximation in Equation 30.
To take advantage of this estimation, we apply it to the policy
gradient:

∇θJ(θ) = w

∫
X

dπ(x)

∫
A

∇θπθ(a, x)φT dadx

= w

∫
X

dπ(x)

∫
A

πθ(a, x)φφT dadx

= Gθw (33)

In this case, it is still difficult to estimate Gθ. One can show
that Gθ = F , where F is the Fisher information matrix [6].
It is defined as

F = E

{
∇θ log

n∏
`=0

fθ(X`)∇θ log

n∏
`=0

fθ(X`)

}
(34)

where fθ is the probability density function for the parameter
θ and X` is a random variable. Given policy gradients, there
is only one random variable (n = 1):

F = E {∇θ log πθ(τ)∇θ log πθ(τ)} (35)

=

∫
X

dπ(x)

∫
A

πθ(a, x)φφT dadx (36)

= Gθ (37)

Neural network training algorithms adopt the natural gradient
as a metric:

gNG = F−1geuclid (38)

Inserting Equation 33 shows that the natural gradient corre-
sponds to our estimation of the vector w of the compatible
function approximation

gNG = F−1Gθw = w (39)

This means that an estimation of w suffices and there is
no need to estimate Gθ. Usual gradient descent methods
use the assumption of an Euclidian metric in the parameter
space without any a-priory reason. The Fisher information



Listing 1. episodic natural actor-critic with constant baseline
r ep ea t

perform N trials, obtain: {x0:H , u0:H , r0:H}
Policy derivatives φn = ∇θ log π(an, xn)

Fisher information F =
∑N
n=0((

∑H
j=0 φj)(

∑H
i=0 φi))

Cumulated reward r =
∑N
n=0(

∑H
l=0 rl)

Eligibility Φ =
∑N
n=0(

∑H
j=0 φj)

Vanilla gradient g =
∑N
n=0((

∑H
j=0 φj)(

∑H
l=0 rl))

Baseline
b = m−1(1 + Φ(mF − ΦΦT )−1)(r − ΦTF−1g)

Natural gradient geNAC1 = F−1(g − Φb)
u n t i l geNAC1 conve rged

metric discloses information about the quality of the gradient
estimation.

To overcome matrix inversion problems during the function
approximation, we take advantage of the matrix inversion
lemma [7], which gives rise to the algorithm shown in
Listing 1. For a detailed derivation see Peters [8].

E. Episodic Natural Actor-Critic with Time Variant Baseline

The gradient estimation can be significantly improved in
some cases by computing the gradient estimation and the cor-
responding baselines time variant. The time variant baselines
can be interpreted as additional basis functions. Hence, the
regression matrix of these functions has the following form:

XT =

[
φ0

0, φ
0
1, ..., φ

0
n, φ

1
0, ..., φ

m
n

e0, e1, ..., en, e0, ..., en

]
, (40)

where φmn =
∑n
k=0∇θ log π(amk , x

m
k ) for a trial m and ei

represents the i-th unit vector of length n. The target matrix
has the form:

Y T =
[
r0
0, r

0
1, ..., r

0
n, r

1
0, ..., r

m
n

]
, (41)

where rmk denotes the reward for trial m in time step k. The
regression problem results in the form:[

w
b

]
= (XTX)−1XTY (42)

⇒
[
geNACn
r̄

]
=

[
F Φ

ΦT mIH

]−1 [
g
r̄

]
(43)

Applying the inversion lemma and leads to the algorithm
shown in Listing 2.

F. Solution for the Policy Gradient

We now derive a general formula for calculating the policy
gradient. It assumes a normally distributed exploration. A
normally distributed policy in the n-dimensional space is
defined with a covariance matrix of

πθ(~a, ~x) = c exp

(
−1

2
(~a− µθ(~x))>Σ−1(~a− µθ(~x))

)
(44)

where c = ((2π)n/2 |Σ|1/2)−1 is the normalisation term and
µ is a transfer function. The action vector ~a is defined as

Listing 2. episodic natural actor-critic with time-variant baseline
r ep ea t

perform N trials, obtain: {x0:H , u0:H , r0:H}
Policy derivatives φmn =

∑n
t=0∇θ log π(amt , x

m
t )

Fisher information F =
∑m
j=0

∑n
i=0(φjiφ

j
i

T
)

Reward vector r̄ =
∑m
j=0

∑n
i=0 r

j
i ei

Eligibility Φ =
∑m
j=0[φj0, φ

j
1, ..., φ

j
m]

Vanilla gradient g =
∑m
j=0

∑n
i=0 φ

j
ir
j
i

Baseline
b = m−1(In + ΦT (mF − ΦΦT )−1Φ)(r̄T − ΦTF−1g)

Natural gradient geNACn = F−1(g − Φb)
u n t i l geNACn conve rged

~a = µθ(~x) +~ε. To compute the policy gradient it is necessary
to compute the logarithm of π:

log πθ(~a, ~x) = log c− 1

2
(~a− µθ(~x))>Σ−1(~a− µθ(~x)) (45)

In most cases, Σ is a diagonal matrix with the diagonal vector
(σ2

1 , . . . , σ
2
n). The policy gradient is defined by

∇ log πθ(~a, ~x) = −∇1

2
(~a− µθ(~x))>Σ−1(~a− µθ(~x)) (46)

= Σ−1(~a− µθ(~x))∇µθ(~x) (47)

By substituting (~a− µθ(~x)) with ε we get

∇ log πθ(~a, ~x) = (Σ−1ε)∇µθ(~x) (48)

This general formula calculates the policy gradient of a given
policy under for a normally distributed exploration. It shows
that the policy gradient is computed of derivated transfer
function normalised by variance and the exploration.

III. UNIFORM REPRESENTATION FOR LINEAR
CONTROLLERS

Related to policy gradient methods we are interested in
policies that achieve four main characteristics: First, the policy
should be highly expressive so that it is able to approximate
the function in an optimal way. Second, a policy should have
only few parameters as the number of necessary learning
trials grows with the number of parameters. Third, the error
landscape should be suited well for gradient descent methods.
We finally need a policy that is differentiable – with respect
to its parameters – in order to calculate the policy gradient.

To overcome all these problems, we propose to model
the transfer function in the z-transformed space as a rational
function. The transfer function is represented as a state ma-
chine. For determining the initial policy parameters required
for policy gradient methods, we introduce an approach, which
is able to derive an initial parameter set by imitating a single
sample trajectory.

A. Z-Transformed Controller

The z-transformation is defined as

X(z) = Z{x(t)} =

∞∑
t=−∞

x(t)z−t, (49)



where x is a transfer function, t a discrete time step, and
z a general complex number. It is possible to represent, for
example, differentiations, integrations, or oscillations. Note
that the controller abilities depend on the sampling time of
the controller. We define linear discrete control policies in z-
space with n parameters using the following form:

µ(z) =
θ1z

1−m + θ2z
2−m + · · ·+ θm

−θm+1z1−m − θm+2z2−m − · · ·+ 1
(50)

=

∑m
i=1 θiz

i−m

1 +
∑m−1
i=1 −θm+izi−m

(51)

This can be considered as IIR (Infinite Impulse Response)
filter, which can be represented as a state machine. We refere to
it as z-policy. The variable m is said to be the degree or order
of the z-policy. It indicates how many past steps of the policy
are involved in the computation of the current output value
and it corresponds to the degree of the nominator polynom. A
corresponding canonical structure – the “Transpose-Form IIR
Filter Structure” [9] to the rational function of Equation 51 –
is shown in Figure 1. The z−1 elements delay the input signal
by one timestep and form “memory”.

Fig. 1. Canonical direct structure of a rational z-space function

In order to apply policy gradient methods we need the
derivative of the controller with respect to its parameters ~θ,
which can be directly computed in its z-transformed form.

Proof by definition:
∞∑

t=−∞

δx(t)

δθi
z−t =

δ
∑∞
t=−∞ x(t)z−t

δθi
=
δX(z)

δθi
(52)

Hence, we are able to introduce a state machine for every
derivative of θj , given a rational function.

B. Initial Parameters by Imitation Learning

In order to complete the policy, we need values for ~θ, which
can be optimised by policy gradient algorithms. These can get
stuck in local minima. For this reason, the initial parameter
values are important for finding a good final policy. But
analytically initial parameters can only be found with a system
model, or for simple policies like proportional controllers.

Because of the complex error landscape in parameter space,
which is especially caused of imaginary poles it is necessary
to find a parameter initialisation near to the desired trajectory.
This problem can be solved by initialising the parameters

through demonstrating a trajectory. The generated Input/output
pairs are used for computing the parameters through linear
regression. The idea is close to the training of Echo State
Networks with teacher forcing [1]:

a(z) =
θ1z

1−m + θ2z
2−m + · · ·+ θm

−θm+1z1−m − θm+2z2−m − · · ·+ 1
e(z) (53)

=e(z)θ1z
1−m + e(z)θ2z

2−m + · · ·+ e(z)θm+ (54)

a(z)θm+1z
1−m + a(z)θm+2z

2−m + · · ·+ a(z)θnz
−1

Transformed in time space this leads to

a(t) =e(t+ 1−m)θ1 + e(t+ 2−m)θ2+

· · ·+ e(t)θm+

a(t+ 1−m)θm+1 + a(t+ 2−m)θm+2+

· · ·+ a(t− 1)θn (55)

So each time step t of the demonstrated trajectory leads to an
Equation 55. By applying the linear regression we get:

~θ = (XTX)−1XTY (56)

with

Xi =
[
e(i+ 1−m), . . . , e(i), a(i+ 1−m), . . . , a(i− 1)

]
(57)

for 0 ≤ i ≤ H and

Y =
[
a(0), a(1), . . . , a(H)

]
(58)

where H is the number of input/output pairs of the demon-
strated trajectory.

IV. REGULARISATION TERM

All natural policy gradient algorithms introduced so far
share the same drawback: a differentiable policy cannot be
chosen arbitrarily. To ensure that the Fisher matrix is invertible
it is not allowed to have more than one parameter with the
same derivative. Otherwise, this results in linearly dependent
vectors in the matrix, which is a direct result of Equation 34.
If derivatives differ only slightly, the inversion will lead
to numerical problems. Note, that this is the case if two
parameters have the same or similar influence to the resulting
action. The following example illustrates, why it is hard to
avoid a parameter dependency.

A. Necessity of a Regularisation Term

Given a third-order z-policy

µ(z) =
θ1z
−2 + θ2z

−1 + θ3

θ4z−2 + θ5z−1 + 1
(59)

with an initial parameter vector ~θ = [0, 0, 1, 0, 0], which is
actually the representation of an proportional controller with
a gain of 1. The derivatives for θ4 and θ5 are

∇θ4µ(z) =
(θ1z

−2 + θ2z
−1 + θ3)z−2

(θ4z−2 + θ5z−1 + 1)2
(60)



and

∇θ5µ(z) =
(θ1z

−2 + θ2z
−1 + θ3)z−1

(θ4z−2 + θ5z−1 + 1)2
(61)

Rewriting this policy using a Gaussian exploration and taking
the parameter vector into account, we get

∇θ4 log π(z) =
z−2

1

ε

σ
(62)

and

∇θ5 log π(z) =
z−1

1

ε

σ
(63)

This means that for the policy derivatives of the full trajectory
φ =

∑H
t=1∇θ log π(at, xt) for the eNAC, the only difference

between ∇θ4 log π(z) and ∇θ5 log π(z) is the last value of
∇θ5 log π(z). This is a result of the exponent of the variable
z, which leads to a time delay between both derivatives. For
a more complex parameter vector ~θ this relation might not
be present, but as shown in this example linear dependencies
are not always obvious. The resulting numerical inversion
problems of the Fisher matrix can lead to a high variance
in the gradient estimation or a random walk.

Despite this example the problem is not only limited to z-
policies. Especially in complex policies it is hard to predict if
two parameters have the same influence to the resulting action
or not. In order to simplify the task of choosing a policy, an
algorithmic solution is desired.

B. Solution

In this paper we introduce a term λI for the update rule to
avoid these problems:

gNG = (F + λI)
−1

(g − Φb) (64)

The Fisher information matrix is turning the gradient with
respect to the performed exploration. This means if λ is huge
(relative to the matrix F ) the matrix only has small influence
on direction changes of the gradient. Thus, we scaled λ by the
determinant of the matrix:

λ =
α

det(F ) + 1
(65)

The constant value α is set to 0.01 in all experiments; we
determined the value empirically. It facilitates the inversion of
F but still leads to a gradient close to the natural gradient.

A further interpretation of this term is well known from the
least squares regression [10]. This term is the result of solving

E(gNG) =
1

2

H∑
k=1

(rk − gNGφk)2 +
λ

2
gTNGgNG (66)

for the minimum. Minimising of λgTNGgNG favours solutions
with a small gradient, while λ is a weighting factor compared
to least squares. With this concept we provide a simple
algorithmic enhancement for computing the natural actor-critic
policy gradient for arbitrary policies.

V. RESULTS

A. Cartpole Experiment with a z-Policy

In this experiment we focus on the question whether the
eNAC algorithm is able to compute parameter updates for
strongly coupled parameters and whether the z-policy is able
to control a standard cartpole simulation [11] only with the
position information of the cart and the pole. The task of the
controller is to balance a pole on a cart, which is able to move
in one dimension. Note, that an internal represention of the
velocities it is necessary for solving the balancing problem
from arbitrary initial states. A further challenge is to find a
linearisation for the operating point, which actually is a pole
angle of 0◦.

1) Imitation: The chosen structure of the controller is the
sum of two z-policy controllers R1 and R2 with a degree of
10. This gives enough freedom to find a good approximation.
Thus, we have a single input multiple output system as shown
in Figure 2. The reference value vector ~w = ~0 and the system
output values y1 and y2 are the cart position and pole angle.

Fig. 2. Control structure of the cartpole system

In order to find initial parameters for the controller, we make
use of the new learning by demonstration technique proposed
in this paper. The goal is to find a controller that controls
the pole angle, and a second controller for the cart position.
The imitation step is extended by a decomposition step, that
devides a sample trajectory in two new specific trajectories.
The example trajectory is generated by a sample controller
that can solve the problem in an imperfect way. See [12] for
a detailed derivation of this part of the experiment.

2) Applying the Episodic Natural Actor-Critic: Both con-
trollers have n = 19 parameters – 10 in the nominator
polynomial and 9 in the denominator polynomial. In order
to reduce the variance of the gradient estimation, a good
coverage of the parameter space should be achieved. Therefore
a parameter update is performed after 3

2n trials by the episodic
natural actor-critic with constant baseline.

Furthermore, a reward function is needed. The goal of the
controller is to reach a target cart position of [−0.1 m, 0.1 m],
while balancing the pole within an angle of [−0.1 rad, 0.1 rad].
Therefore, the reward function is specified as

r(~x, a) =

{
0, if the pole has target angle and position
−1, otherwise

(67)

In order to allow the controller to reach these positions an ε-
environment is specified around the target points. This reward
function will lead to a controller that tries to achieve the goal
as fast as possible.



The learning progress for this experiment is slow. Riedmiller
et. al. [13] could show, that a similar problem can be learned
with 5050 trials by determining a fixed policy structure in
time space. As shown in Figure 3, the eNAC1 needs at
least 200 parameter updates(5800 trails) to find the next
local optimum. The figure averages the reward history of 20
learning experiments. Obviously, only a small learning rate
can be used during a parameter update because the system is
close to instability. This can be shown by manually changing
parameters: Even very small parameter changes of about 10−3

can lead to an instable system. Parameter updates in eNAC1
lead to changes of up to 10−1.

The error bars in Figure 3 represent standard deviation. The
raising variance for a higher number of parameter updates
indicates the existence of multiple local optima. Furthermore
for one unique experiment a reward of −62 could be achieved.
We were not able to reproduce these results in the 20 trials.
Thus it is not considered in the statistics underlying this figure.
Furthermore, the figure shows an example of the improvement
without a sufficient regularisation term. One update step lead
to a parameter set wich achieved a reward of −370 caused by
a random walk. This shows the necessity of this term with a
sufficient value for λ.

Fig. 3. Reward improvement with and without Regularisation Term

After the successful training it is still unknown whether the
controller is able to generalise. In order to demonstrate this, the
resulting controller was applied to 66 different initial states.
We tested starting angles of −0.1 ≤ α ≤ 0.1 rad together with
starting positions between 1.0 and −1.0. The controller was
able to solve the balancing problem for all initial states.

B. Learning and Optimising Ball Interception for a RoboCup
Robot

We now propose a scenario that assigns the training result
of z-policies to a real world system. The approach has been
applied on middle size league RoboCup robot. The robot is
driven by wheels arranged for omnidirectional movement [14]
and has a height of 80 cm. The task of ball interception consists
basicaly on the choice of the robot velocity and rotation. The
main goal of this experiment is to demonstrate how the z-
policy approach handles noisy ball and robot positions.

1) Imitation: The robot shall learn the translation allowing
the interception of an unmoved ball. In order to solve this
problem, the policy has to find a transfer function that maps a
desired robot velocity to a specific ball distance. For the initial
policy, the robot is moved by a human towards the ball from
a distance of 2 m. The collected demonstration data are used
to compute the initial parameters for a z-policy of degree 4.

Figure 4 depicts the demonstrated translation trajectory as
well as the trajectory generated by the robot with respect to
the ball distance. The discontinuous points in the plot indicate
the noise of the estimation of the ball distance. It shows that
a polynomial of degree of four is not sufficient for imitating
the trajectory accurately. Furthermore, the error signal of the
imitation differs from the training signal. However, the imi-
tated trajectory still exhibits the same characteristics: Moving
towards the ball with a high velocity and slowing down when
getting close to it. It must be emphasised that the demonstrated
trajectory is the result of only a single trial.

2) Optimisation: In the second part of the experiment, the
eNAC1 algorithm is applied to the policy in order to optimise
the robot’s behaviour towards a local optimum. According to
the degree of four of the z-policy, seven parameters are present.
For this reason and in order to reduce the gradient variance,
a parameter update is performed after 14 trials. Seven trials
per parameter update are usually sufficient in this experiment
but more trials stabilise the gradient estimation by reducing
the variance. The reward function for rating the actions of a
robot is given by

r(x, a) =

{
0, if robot has the ball
−1, otherwise (68)

In order to ensure that the robot is not too fast and thereby
pushes the ball away, we compute the difference between their
velocities as a final reward: rfinal =|vrobot − vball|.

As shown in Figure 5, the reward could be increased from
−198 to −135 within only five parameter updates. This results
in a behaviour, which is able to intercept the ball about
2 seconds faster than the initial policy. The learning rate
to achieve this goal is determined through computing three
gradients to roughly estimate the magnitude and the effect of
a parameter update.

Figure 4 shows the demonstrated trajectory (solid), the
initial imitation of the z-policy (dashed) and the optimised
behaviour (dotted). While improving the policy, the velocity
is maximised while keeping the ball in the dribbling device.

The final robot policy for intercepting a ball performs
better than previous manually implemented behaviours and
was able to compete very well in a soccer match with the
RoboCup world champion of 2009 in a soccer match during
the RoboCup German Open in 2010.

VI. CONCLUSIONS

In this paper we address the two major challenges of finding
an optimal control structure and optimal parameters for the
specific structure. While other learning approaches use black
box function approximations, the presented approach is able



Fig. 4. Results of learning a translation trajectory for a ball interception:
Trajectory demonstrated by a human (red), initial imitation of a z-policy with
degree of 4 (green), eNAC1 optimised trajectory (blue).

Fig. 5. Reward history for improving the demonstrated trajectory

to find a white box policy with only little a-priori knowledge
about the target system.

This result is achieved by learning the parameters of a
rational function in z-space with policy gradient methods.
Classical control theory offers techniques for the analysis of
z-policies.

The z-policy representation allows a implementation as state
machine and the usage of the proposed imitation approach for
control structures of linearisable control problems as shown
in the cartpole experiment. Furthermore, we showed how
to compute the policy gradient for z-policies of arbitrary
degree. This facilitates the usage of the episodic natural actor-
critic algorithm to optimise the policy parameters to a local
minimum as shown in both case studies.

A regularisation term is introduced in order to stabilise the
computation of the natural actor-critic independently of the
policy structure. Policy parameters that have the same influ-
ence on the resulting action cannot be optimised without such

a regularisation term. Not using this term would otherwise lead
to numerical inversion problems of the Fisher matrix, which
are avoided this way.

In order to show the feasibility of the proposed approaches
– i.e. policy gradient methods – also in the presence of sensor
noise, we performed an evaluation in a real RoboCup scenario.

In contrast to neural network-based approaches, the solution
of the presented approach can be checked analytically. Finally,
the z-policy is more expressive than PID controllers and easier
to apply because of the imitation approach.

For futur research activities we propose to extend the
policy structure for multiple inputs instead of making use of
the decomposition step. It might be useful to involve some
nonlinear basis functions, in order to increase the expressivity
of the policy. Finally the way how the non episodic natural
actor-critic can benefit from regularisation term has to be
evaluated.
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