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Abstract— In this work, we propose an extension to the
Neural Fitted Q-Iteration algorithm that utilizes a learned
model to generate virtual trajectories which are used for
updating the Q-function. Compared to standard NFQ, this
combination has the potential to greatly reduce the amount of
system interaction required to learn a good policy. At the same
time, the approach still maintains the generalization ability of
Q-learning. We provide a general formulation for approximate
model-assisted fitted Q-learning, and examine the advantages
of its neural implementation regarding interaction time and
robustness. Its capabilities are illustrated with first results on
a benchmark cart-pole regulation task, on which our method
turns out to provide more general policies using much less
interaction time.

I. INTRODUCTION

Q -LEARNING is a powerful and general approach to
reinforcement learning that allows a system to acquire

arbitrary skills purely from success and failure, with little
to no prior knowledge of the true system dynamics. Among
different approaches to Q-learning, batch methods such as
Fitted Q-Iteration [1] and its neural version Neural Fitted Q-
Iteration (NFQ) [2] have proven useful for stable and robust
learning. However, in practice such methods often suffer
from limitations regarding the currently attainable speed of
learning, which prevents their application to many interesting
but complex problems. One such limitation lies in the nature
of iteration itself: When a terminal state is observed, it will
not influence the Q-values of other states immediately, since
its value needs to be iterated through the function first.
Thus, when learning in batch mode, there is a minimum
number of episodes of interacting with the system that will be
needed to acquire a suitable policy. In general, this number
corresponds to the minimum number of steps that a trajectory
from starting state to goal requires. Since interaction with
the system can be costly, be it in terms of energy or wear of
hardware, it would be desirable to be able to further speed
up learning.

An obvious solution to the problem lies in simply perform-
ing multiple updates of the Q-function after each episode in
order to propagate new experiences from terminal to starting
state immediately. However, given the inevitable sparseness
of data in the beginning of the learning process, such multi-
updates on the same data set are likely to cause overfitting
when using an approximator to represent the Q-function
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– which is a condition for practically any data-efficient
algorithm and moderately complex task.

In principle, it is possible to apply a regularization mech-
anism with which to limit the approximator’s complexity
and thus reduce overfitting. For instance, Farahmand et al.
[3] have used regularized least squares for regularized fitted
Q-learning. When using neural networks, weight decay can
likewise be used. However, doing so carries in turn some risk
of reducing the complexity of the function in places where it
actually should be complex. Specifically, sharp peaks in the
value function might disappear even when they are desirable,
as can commonly occur in tasks where a goal state is located
between failure states. This would not be a problem if enough
data was available, but with the goal being to allow learning
with little interaction, there may be only single samples in
the peak regions which consequently get regularized away.

To resolve such issues, the alternative approach that will
be used in the following involves learning a model from
the observed data. By performing virtual trajectories on this
model, additional data can then be generated. Assuming that
the system’s policy is updated after every rollout through
the model, this achieves a greater data spread than simply
training repeatedly on the same set of transitions. In doing
so, we avoid the need for Q-function regularization, and can
instead simply fit the approximator to the larger data set.

This approach still uses techniques of model-free Q-
learning and augments them with a model, rather than using
it directly for learning a value function in a model-based
manner. As such, data observed during real interaction can
easily be incorporated with that generated by the model,
which is desirable given that the real data is more reliable
than the virtual. It is also possible in principle to switch
from an almost purely model-based learning process in the
beginning to purely model-free learning once enough data
is available. The method thus constitutes an intermediate
case between model-based and model-free learning. For the
lack of an established term, we will refer to it as model-
assisted learning in the following, or, since the model is to
be learned as well, more specifically as approximate model-
assisted learning.

Such bootstrapping from a learned model to boost the
speed of Q-learning has previously been used in online learn-
ing by the Dyna family of algorithms [4], [5]. However, if the
Q-function needs to be updated online while interacting with
the system, the number of virtual rollouts is strictly limited
by the system’s cycle rate. As such, the Dyna algorithm uses
the model only to predict the current trajectory several steps
into the future, rather than generating an amount of data
suitable for boosting early learning. In addition, the amount
of time required for updating the respective approximator



generally precludes the execution of a large number of
updates, and thus prevents solving the goal state propagation
issue described above.

In contrast, when applying model-assisted learning in a
fitted batch learning setting, the Q-function approximator is
updated only between interaction episodes. Consequently,
it is possible to perform an arbitrary number of rollouts
and boost the data set used for learning to any desired
size. In addition, as many updates of the Q-function can be
performed as are needed to propagate the values of terminal
states through the entire function.

The basic principle behind using model-assisted learning
to boost batch learning is not tied to any specific imple-
mentation of the Q-function and the model. In the follow-
ing, we focus on the neural variant for both, thus gaining
an approximate model-assisted version of NFQ, which we
dub Approximate Model-Assisted Neural Fitted Q-Iteration
(AMA-NFQ). By choosing neural networks as approximators,
we gain a compact representation of arbitrarily complex
functions, while the resulting policy remains fast to evaluate.

To sum up, we introduce a general fitted approach to
approximate model-assisted learning, and provide a neural
implementation for it. In the following we will first describe
the method in detail in Section II. Afterward, we will
examine its performance in a classical cart-pole benchmark in
Section III with regards to the amount of interaction needed
and the quality of the attained policy. Using this setting, the
approach will be compared to its classical model-free variant.

II. METHODS

A. Markov Decision Processes

Before describing the specifics of the proposed method,
we briefly introduce the notation used in the remainder of
this work. In reinforcement learning, a problem is usually
formulated as a Markov Decision Problem (MDP), which can
be formalized as a tuple {S,A, P, c} [6]. The MDP consists
of a set of states S that the system can be in, a set of actions
A that are available to the agent, a state transition probability
function P (s′|s, a), and a transition cost function c : s×a×
s′ → R. Our aim is to learn a Q-function Q : s×a→ R that
estimates the expected cost-to-go when choosing action a in
state s, without assuming prior knowledge about P . This Q-
function can then be used as a control policy π : s → a by
simply choosing whichever action minimizes the expected
costs in a given state, i.e. by π(s) = argminaQ(s, a).

B. Approximate Model-Assisted Fitted Q-Learning

In principle, the method we propose is a straightforward
extension of standard fitted Q-learning [1]. When training a
controller in a batch fashion, one would normally perform a
trajectory on the real system S using the policy derived form
the current Q-function. The trajectory is added to a memory
B, and the Q-function is fitted to the new transition pool
using some update function C, as illustrated in Algorithm 1.

To achieve approximate model-assisted learning, we ad-
ditionally learn a transition model M that approximates P .

Algorithm 1 Standard Fitted Q-Iteration
Require: Q update function C

1: Q← initialization
2: B ← ∅
3: loop
4: T ← S(Q) . perform trajectory
5: B ← B ∪ T . extend memory
6: Q← C(Q,B) . update Q-function
7: end loop

M is updated using an update function U and the collected
real transitions BR, as in Algorithm 2. At the end of each
interaction episode, virtual trajectories BV are generated
from the model and used to update the Q-function.

Algorithm 2 Approximate Model-Assisted Fitted Q-Iteration
Require: Q update function C, model update function U

1: Q← initialization
2: BR ← ∅
3: loop
4: T ← S(Q) . perform real trajectory
5: BR ← BR ∪ T . extend real memory
6: M← U(M, BR) . update model
7: BV ← BR . copy memory
8: for r rollouts do
9: T ←M(Q) . perform virtual trajectory

10: BV ← BV ∪ T . extend virtual memory
11: Q← C(Q,BV ) . update Q-function
12: end for
13: end loop

It is worth noting that by using a temporary copy BV of
the transition store BR, we discard any virtual transitions
after they have been used for the update, and replace them
with new ones from the updated model after the next episode.
This approach bears resemblance to the Dyna-2 algorithm
[5], where separate Q-functions were learned on the real
and simulated data, dubbed the long-term and short-term
memories, respectively. Such a procedure was necessitated by
the fact that past experiences are only stored implicitly in the
Q-function when learning online. In contrast, batch learning
allows a straightforward treatment of obsolete experiences by
simply discarding them rather than splitting the Q-function
into parts.

C. Neural Fitted Q-Iteration

The general approach of model-assisted fitted Q-iteration
as described above does not assume the use of any specific
type for the Q-update function C. Here, we use a multi-
layer perceptron to represent the Q-function. It is updated
using the same update function as in the Neural Fitted Q-
Iteration (NFQ) algorithm [2], which is depicted in Algo-
rithm 3. After each episode, a new, randomly initialized
network is prepared. Training targets are generated by adding
the observed transition costs c(si, ai, s′i) to the costs-to-go



estimated by the previous Q-function. The network is then
fitted to the resulting training patterns using the Rprop variant
of backpropagation [7], which uses a gradient-independent
momentum term for fast convergence.

Algorithm 3 NFQ Update Function CNFQ

Require: current Q-function Qk, transition samples B
1: P in ← ∅, P out ← ∅
2: for i < |B| do . generate pattern set
3: P in

i ← (si, ai)
4: P out

i ← c(si, ai, s
′
i) + γminbQk(si, b)

5: end for
6: Qk+1 ← init weights
7: for e epochs do
8: Qk+1 ← Rprop(Qk+1, P

in, P out) . Rprop training
9: end for

10: return Qk+1

In keeping with the neural architecture, we also use a feed-
forward neural network to approximate the system model.
Instead of directly learning the transition function P directly,
we train the net to predict the difference ∆s between states.
The net is updated using Rprop gradient descent in the same
manner as the Q-function.

III. EXPERIMENTS

To illustrate the advantages of the AMA-NFQ approach
over its classical variant, we examined a cart-pole system on
which we attempted to solve a balancing and regulation task.

A. Cart-Pole Regulator

We have adopted the system dynamics introduced by Barto
et al. [8], [6], which have since become a standard benchmark
for reinforcement learning algorithms. The four-dimensional
system state is described by the linear position p and velocity
∆p of the cart, as well as the angular position θ and velocity
∆θ of the pole attached to it. Cart positions are restricted
to the interval [−2.4; 2.4]. The available actions are defined
by the linear force to be applied to the cart, with 10N and
−10N being available, and can be given at time intervals of
0.02s.

The task to be optimized here was a combined balancing
and regulation problem. In addition to preventing the pole
from falling down, the agent was required to keep the cart
within a narrow target zone. Specifically, the goal was to
bring the system into a target area S+, which required
keeping the pole in the interval θ+ = [−0.05; 0.05] (in rad),
and the cart in p+ = [−0.05; 0.05] (in m), as depicted in
Fig. 1. If the system left the working area Swork defined by
θwork = [−0.7; 0.7] and pwork = [−2.4; 2.4], the agent was
considered to have failed (i.e. entered S−), and the episode
was aborted.

Initial states could vary from the upright position, and for
training were sampled randomly from the interval [−0.5; 0.5]
(in m) for the cart position ptrain, and [−0.5; 0.5] (in rad) for
the pole angle θtrain. The initial velocities of both cart and
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Fig. 1. Illustration of the cart-pole system, with goal (green) and failure
(red) areas indicated to scale.

pole were always 0. A training episode lasted for 200 cycles
or until the system left the working area. For testing, 100
initial states were sampled uniformly from ptest ∈ [−1; 1]
and θtest ∈ [−0.5; 0.5]. Episodes could last for 500 cycles
during testing.

No exploration strategy was used; both during training
and testing, policies were performed greedily. Costs were
assigned purely based on time, with c = 0.01 for each
transition not in the goal region and c = 1 for failure; no
reward shaping was utilized, thus yielding the cost function:

c(p′, θ′) =

 0 if p′ ∈ p+ and θ′ ∈ θ+
1 if p′ ∈ p− or θ′ ∈ θ−
0.01 otherwise

B. Results

As a first comparison, we examine how much of an
increase in performance the use of a model brings over the
standard version of NFQ.

When using standard NFQ, a single update of the Q-
function was performed after each episode. For AMA-NFQ,
10 rollouts were performed, each of them followed by an
update. In both cases, the Q-function was represented by
a feed-forward multi-layer neural network with two fully
connected hidden layers of 20 units each, a structure that has
proven useful for Q-learning in many previous applications
[9]. The model was represented by a multi-layer percepton
as well, using a structure of a single hidden layer with 20
units. Again, the structure was chosen arbitrarily based on
past experiences in order to avoid having to tailor parameters
to the task, i.e. providing prior knowledge. For all nets,
each unit used a sigmoidal activation function, and weights
between them were randomly initialized in the interval
[−0.5; 0.5]. During each application of the update function
CNFQ, e = 300 epochs of Rprop gradient descent were
performed. While likely not enough for perfect fitting of
the net to the data, this amount has often turned out to be



Fig. 2. Average number of steps spent outside target during testing. The
episode length of 500 steps provides the upper limit.

sufficient to learn the relative costs between different states
in the past.

The system was trained for 100 episodes. We compared
the accumulated transition costs, i.e. the number of steps
that the system spent outside the target range, with results
averaged over 10 runs of the experiment and each policy
evaluated from 100 test positions. Since the reward function
was specified in such a way as to optimize for minimum time,
this measure corresponds to the actual policy performance.
As Fig. 2 shows, the number of steps decreased considerably
faster for AMA-NFQ than for NFQ.

In addition to performance, we also examined the robust-
ness of the learned policies. To this end, the average number
of test runs that reached a terminal state were compared.
As evident from Fig. 3, AMA-NFQ achieved a much higher
success rate, managing to reach the goal from approximately
80% of all initial positions in the end, compared to only 30%
for standard NFQ.

Minimum-time optimization can also be used in situations
where any robust policy is sufficient, rather than a globally
optimal one, as well as when the main aim is to generate a
sample set for fixed-batch learning. In a task like the simu-
lated cart-pole, where the performance of each policy can be
evaluated easily, there is then no need to wait for convergence
of the learning process. Instead, once a desirable first policy
occurs, it can be chosen as final. Therefore, it is worthwhile
to not only look at the average performance, but also at
the number of episodes needed until the first occurrence of
an admissible policy. The first policy to reach a terminal
state from all test positions occurred much earlier for AMA-
NFQ than for NFQ, as Fig. 4 shows. AMA-NFQ managed
to produce such a policy during every single run, requiring

Fig. 3. Average percentage of successful test trials during testing.

between 19 and 50 episodes to do so. In contrast, standard
NFQ could did not yield any policy capable of reaching the
goal from all initial positions within the 100-episode time
frame. Its best policy across all 10 runs managed a success
rate of 98%, though fully robust policies were acquired
eventually in all but one run, where the top performance
did not exceed 67%. The average reliability of NFQ reached
that of AMA-NFQ eventually, as shown in Fig. 5, with results
again averaged across 10 runs.

The cause for the earlier model acquisition becomes ap-
parent when examining the model’s prediction error. Fig. 6
shows its development over time, computed across the work-
ing range Swork, as well as across velocities ∆θ and ∆p
within the interval [−0.5; 0.5]. The system rapidly learned
a faithful representation by around episode 10 as Fig. 7
illustrates, and it was not long after that fully robust policies
appear in Fig. 4. Particularly in the region around the
target state was the model error reduced quickly, whereas
it remained higher at the more sparsely sampled edges of
the system’s working range, as illustrated in Fig. 8

While the results for AMA-NFQ were consistently better
than for classical NFQ, there was a large difference in the
amount of time required by each method to reach these re-
sults. Whereas a 100-episode run of NFQ could be completed
within under two hours on a commodity system (without
parallelization or GPU usage), AMA-NFQ required more
than a day for the same number of episodes.

IV. DISCUSSION

In summary, we have proposed AMA-NFQ, a new approx-
imate model-assisted extension to Neural Fitted Q-Iteration.
A general formulation for other types of approximate model-
assisted fitted Q-learning, using arbitrary approximators on



Fig. 4. Number of episodes (bottom) and cycles (top) until generating the
first policy that reaches the goal from all initial test states, for AMA-NFQ
(red) and NFQ (black). Unsuccessful policy for NFQ not shown.

Fig. 5. Average percentage of successful test trials during extended testing
for NFQ, with AMA-NFQ performance for the first 100 episodes shown in
gray.

Fig. 6. Development of the model prediction error over time, averaged
over 10 experimental runs. For the normalized metric, errors were scaled
by the range of their respective inputs.

Fig. 7. Example trajectories generated from initial state θ = 0.3, p = −0.7
using constant action a = 10N . Top: true trajectory. Second row to bottom:
trajectories from different models after 2, 3, 5 and 10 episodes. X-axis shows
interval [1; 1], y-axis [0; 1].
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Fig. 8. Prediction error across the working area for three sample models
after (from top to bottom) 2, 10 and 100 episodes of training. Values are
averaged across [−0.5; 0.5] for velocities and across both actions. Also note
the differences in magnitude of the error.

which to fit Q-function and model, was also provided. The
AMA-NFQ algorithm was shown to perform consistently
and significantly better than model-free NFQ on a cart-
pole regulator benchmark, both with respect to performance
and to robustness of the learned policies. Within only 100
interaction episodes, our method was able to reliably generate
policies that could reach the task’s goal from any test posi-
tion, a feat that model-free NFQ failed to repeat even once.
This was made possible by the model’s ability to learn an
accurate representation of the actual system within a shorter
time than required for learning the Q-function directly.

Thus far we have only applied the method to a single
benchmark, the cart-pole regulator. It remains to be seen
how well it scales up to either more complex tasks or
to higher-dimensional action spaces. For the latter case at
least, preliminary results indicate that it retains its advantage
over classical NFQ. For instance, when applied to the two-
link manipulator benchmark [10], which requires control of
two degrees of freedom of a simulated robotic arm, the
differences in the time required to generate a fully reliable

Fig. 9. Number of episodes (bottom) and cycles (top) until generating the
first policy that reaches the goal from all initial test states, for AMA-NFQ
(red) and NFQ (black) in a two-link manipulator task.

policy illustrated in Fig. 9 mirror those seen earlier in Fig. 2
for the cart-pole regulator. In fact, these results neccessitated
the use of the hint-to-goal heuristic for NFQ [2] to allow
learning, while no such heuristic was needed for AMA-NFQ.

An application to complex problems currently seems to
be limited by the high time requirements, which rise linearly
with the number of rollouts to be performed and the number
of steps in each rollout. Although the rollouts themselves
may be cheap to compute, each is followed by an update
(which, to reiterate, is needed to solve the propagation
issue we set out to solve). It is worth noting that model-
free NFQ is by no means incapable of learning policies of
equivalent performance eventually, as Fig. 5 ilustrated, so
we are effectively trading a moderate amount of interaction
time for a large amount of computation time. We find this
acceptable, given that the computation time can be improved
through parallelization and larger computational power; it
is therefore only a momentary issue. Also, in many real-
world applications, interaction time is more expensive due
to factors like wear or damage to physical systems. Even so,
it should be worthwhile in future refinements to somewhat
alleviate the speed issue by reducing the number of rollouts
over time, which can easily be done due to the fact that at
the core, we still use techniques of model-free Q-learning.

Of course, using the model for rollouts assumes that it
provides an accurate representation of the real system, and
manages to do so with less data than we would normally
need to learn the Q-function. While this was the case here,
it is by no means guaranteed. Therefore, we are often at risk
of incurring a model bias in the learning process. To avoid
such a bias, we intend to employ probabilistic models in the



future, which can help taking the uncertainty of the model
into account.

So far we have not compared the method with the simple
approach of performing multiple inner-loop updates during
classical NFQ. In fact, the use of a single starting state for all
virtual rollouts of a given episode could potentially introduce
a similar bias in our approach. It will therefore be worthwhile
to compare both approaches in the future, and determine
the increase in performance that the bias reduction resulting
from randomized starting states would provide. Preliminary
experiments suggest that the use of a model can result in
superior performance when the model generalizes well, and
equivalent performance at worst in case of overfitting.

Lastly, we have only examined a neural implementation of
approximate model-assisted fitted Q-iteration thus far. While
it is obviously possible to substitute both model and Q-
function by other types of approximators, it remains to be
seen if the same advantages are maintained independently of
the fitting mechanism.

The current study of Approximate Model-Assisted Neural
Fitted Q-Iteration provides only a first look at the approach,
and there are multiple issues that remain to be examined.
However, it should have become apparent that the method
possesses the potential for reducing the amount of data
needed for batch Q-learning, and thus for providing more
data-efficient methods that are still capable of learning robust
control policies in the little amount of training time afforded
in real-world applications.
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