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Abstract— In this work we present a reinforcement learning
system for autonomous reaching and grasping using visual
servoing with a robotic arm. Control is realized in a visual
feedback control loop, making it both reactive and robust to
noise. The controller is learned from scratch by success or
failure without adding information about the task’s solution. All
of the system’s major components are implemented as neural
networks.

The system is applied to solving a combined reaching and
grasping task involving uncertainty directly on a real robotic
platform. Its main parts and the conditions for their successful
interoperation are described. It will be shown that even with
minimal prior knowledge, the system can learn in a short
amount of time to reliably perform its task. Furthermore, we
describe the control system’s ability to react to changes and
errors.

I. I NTRODUCTION

The ability to react quickly to changes is essential for any
robotic application that hopes to be useful in natural all-day
environments. This includes the area of autonomous control
of actuators for reaching tasks, which is not only importantin
traditional robotic scenarios, but will also play an important
role in future human-robot interactions.

Classical planning approaches are limited in this respect.
Even using modern hardware, planning a complete reaching
and grasping movement requires a significant amount of
time, and is usually performed in an open-loop manner
[1]. Closed-loop control is frequently limited to grasp ad-
justments using force [2], [3], [4] or proximity sensors
[5] at or just before contact with the target, but does not
incorporate visual information during the reaching stage.The
time requirements make fully reactive control difficult, even
while more recent works are nearly capable of planning in
real-time [6] and may re-plan their target when failure seems
likely [7].

In contrast, visual servoing methods [8] inherently adhere
to the reactive paradigm [9]. Here, a control signal is gen-
erated directly from the sensory input, without the need for
high-level reasoning. However, even approaches capable of
truly reactive operation [10], [11], [12] typically incorporate
a significant amount of prior knowledge about the system
and the task’s solution. Common requirements range from
camera calibration over the use of complete system models
for generating the visual-motor Jacobian to hand-crafted
control strategies [13].
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Fig. 1. Setup of the system with the cameras, their visual input and
the segmented object. Note that the markings visible on the table do not
directly correspond to the training positions, but were used for guidance
when placing the object.

Machine learning techniques constitute a useful tool for
reducing the amount of expert knowledge required for
autonomous control. Ideally a system would combine the
reactiveness of visual servoing with the knowledge-free
policy acquisition of reinforcement learning. One type of
learning paradigm that has proven well-suited to generat-
ing a behavior even in the complete absence of domain
knowledge is value-function-based learning, particularly the
variant of Q-learning. In recent years such approaches have
been largely overshadowed by policy-based methods, which
have produced impressive successes in various applications
of robotics, albeit with the use of system models and imi-
tation learning [14], both of which constitute forms of prior
knowledge and may not always be available. For instance,
models may become skewed over time in real applications
and demonstrations may be difficult to perform even for a
human, like in the classical inverted pendulum problem. One
major reason for the comparatively rare usage of knowledge-
free systems is the frequently high system interaction time
required, which prevents the application on robotic systems.
However, advanced value-based methods such as Neural
Fitted Q Iteration [15] work in a much more data-efficient
manner and have proven to be usable in real-world systems
rather than only simulated problems [16], [17].

It is important to note that we do not aim to pit the system
against state-of-the-art visual servoing methods; a system
created using prior knowledge will obviously outperform
one learned from scratch. Instead, we intend to illustrate
that value-based methods can still be applied in the domain



of autonomous manipulation, which may be advantageous
in cases where knowledge about the process model or the
problem solution is difficult to generate. To do so, we
consider a combined reaching and grasping task in which
a robotic arm is required to pick up an object. The setup
illustrated in Fig. 1 notably includes the use of a hand-
mounted camera. Such monocular eye-in-hand setups are
generally desirable in manipulation tasks, as they allow
for more precise control and additional robustness against
errors due to occlusion. However, they also make extracting
an accurate 3D pose of an object, which is used in most
manipulation systems [1], difficult, and generally requirea
known system model as well as a calibrated camera for
use in planning. Hand-mounted cameras can eliminate the
need for camera calibration [18], though at the cost of the
requirement that the final camera input at the end of the
movement be known in advance. The desire to avoid even
such information motivates our use of a value-based method
capable of learning only from experience.

As per our main goal, knowledge about the problem
provided to the learner will be limited to a bare minimum.
The only assumption will be to split the reaching task into
three parts, including coarse and fine control as well as
vision-based success prediction.

II. RELATED WORK

Among recent successful visual servoing approaches to
reaching and grasping using eye-in-hand setups, there are
several attempts to reduce the required amount of informa-
tion. Like our system, Piepmeier et al. [19] have used an
uncalibrated camera, while Shademan et al. [20] estimated
the visual-motor Jacobian without knowledge of the system,
though hand-crafted control laws were used.

Reaching and grasping tasks have been extensively cov-
ered using combinations of policy iteration techniques and
imitation learning [1], [7], [21], [22]. There has been a trend
to reduce the amount of knowledge needed, allowing the
generation of trajectories using only a generic initialization
[6], [23].

Similar to the split of the system into controllers of
different scopes, Kim et al. [24] divide the motion into gross
and fine components, solved by table- and hand-mounted
cameras, respectively. An early application of such a scope
split in neural reinforcement learning can be found in [25],
used for thermostat control.

Along the same lines of the implicit grasp success predic-
tion used here, Detry et al. [26] learned affordance densi-
ties of objects, which were explored through pick-and-drop
movements. However, this was done in task space, while our
approach works directly on sensory inputs. Grasping points
in task space have also been extracted explicitly, with no
knowledge of or assumptions about the target’s shape [27],
[28].

While not related to autonomous reaching, the setup used
in [29] to achieve real-time reactive control in a high-speed
ball-bouncing task was quite similar in its nature. In contrast,
however, its solution by means of Model-Predictive Control

[30] required the use of a model of the process. Learning
was addressed in a subsequent work [31], though it took
place only in a simulated environment, still utilizing domain
insight.

To summarize, all previous approaches to visual servoing
for reaching and grasping rely on calibration or the presence
of domain knowledge. In contrast, the system we present in
the following requires no information about the solution of
the task, but instead acquires it completely from scratch.

III. D ESCRIPTION OF THEPHYSICAL SYSTEM

To illustrate our approach, we consider a combined reach-
ing and grasping task in which a Kinova Jaco robotic arm
is required to pick up a bowl located on a planar surface.
The arm is expected to cover a working area of 35cm×
20cm× 20cm and reach the target from arbitrary positions
within. The target itself is movable as well, spanning a range
of 30cm along the area’s long side, while being roughly
centered along the short one.

The system includes two PlayStation Eye USB cameras
arranged in the manner shown in Fig. 1, with one mounted
on the table and one in the robot’s gripper. Neither camera is
calibrated, and the hand camera in particular does not point
into the exact same direction that the actuator is oriented in,
but is skewed to one side by more than 15◦. Information
about the object, is only available in the cameras’ frame of
reference. The object, which is distinctively colored fromits
background, is detected through simple color segmentation,
with the centers of gravity of the resulting color regions
being made available to the system. It is worth noting that
the despite the high visual salience of the object against
its background, which can be seen in Fig. 1, the position
is still only approximate, as no features such as curvature
are used to find the true center and the distance of the
object, and changes in lighting condition may introduce
errors. Furthermore, the object cannot simply be grasped
centrally, but possesses two admissible zones along the rim
that the agent will be required to find. This introduces a
degree of insecurity with which the learner will be forced to
cope.

Both the kinematic pose of the actuator and the robot’s
joint angles are also available to the system.

The robot can be controlled directly in Cartesian coordi-
nates. Only its spatial position is to be adjusted here, with
the actuator’s orientation remaining static relative to the base
joint’s rotation. Finger movement is limited to the closing
of the gripper at the system’s signal. Consequently, the
controller will be required to learn to position the actuator in
such a way that this automated action results in a successful
grasp closure.

While the task may appear trivial to a human observer, it
is considerably less simple given the amount of information
– or rather lack thereof – available to the system and the
peculiarities of the setup. Without complete 3D information
of the environment it is not possible to intuitively determine
whether a sensor state would result in a successful grasp,
and neither is the sensor configuration at admissible grasp
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Fig. 2. Architecture of the combined system during control. Elements
shaded light red represent modules generated by means of machine learning,
i.e. neural controllers.

poses provided in advance. Such information can only be
acquired through a lengthy test of moving the arm to a
different location and checking whether the object moved
along. In addition, no transition model, i.e. knowledge how
choosing a certain action would affect the system, is given.
As the actuator’s orientation in task space and thus the
relation between hand camera and object changes as the
arm rotates, a simple directional proportional control strategy
cannot be used either. The inability to either control the
system by hand or design a simple controller prevents the
use of imitation learning, and the system will have to acquire
a strategy purely through exploration. This in turn increases
the required amount of system interaction, thus requiring the
use of a data-efficient design.

IV. CONTROL ARCHITECTURE

To solve the task in the face of these issues, we propose the
following system design, illustrated in its entirety in Fig. 2.
The system most notably includes two features: firstly, a split
into two separate controllers that operate at different task
scopes, and secondly the use of a mechanism to predict grasp
success.

A. Controller Scope

Intuitively, to allow precise reaching and grasping across
the robot’s entire working area, both cameras would need to
be used in conjunction. The hand camera has a limited field
of view and may easily lose the target from sight during
long movements. Meanwhile, the table camera, just like any
single static camera, possesses a poor spatial discrimination
along one direction of the working plane. Furthermore, it is
subject to occlusion of the object by the arm itself.

Based on the general assumption that many tasks, with
grasping being one of them, require particular precision in
state regions close to the goal state, short reaching move-
ments and the grasp itself will be performed by theshort-
range controller (SRC) using the hand-mounted camera,
which activates once the object is visible in the latter.
Guiding the actuator to such a state for any starting pose
and for any target object position is the responsibility of
the long-range controller (LRC), which utilizes the table-
mounted camera for a wider view.

The SRC is to activate only if the object is visible in
the hand-mounted camera. In addition, it should not be too
close to the image border, as that region can be expected
to be underrepresented in the training data and thus be
difficult to acquire a stable policy for. Formally we define the
SRC’sactivation areaas any state that satisfies the condition
−0.9 ≤ ιHi ≤ 0.9, with (ιHx , ιHy ) being the object position
in the camera scaled to the interval[−1; 1]. The LRC will
naturally be required to be capable of reaching such a state.

Due to the distinct scopes and requirements both con-
trollers will be designed using different learning techniques
and modeling. The focus of this work will lie largely on the
SRC, which implements more precise control and will be ac-
quired through reinforcement learning. In contrast, the LRC
needs to perform only comparatively coarse movements,
albeit over the entire working area, and will be implemented
using supervised learning.

B. Success Prediction

As we do not provide the algorithm with a camera model,
the target states for the visual servoing task, i.e. those in
which closing the fingers should result in a successful pickup,
are not known in advance. To avoid having to perform a
pickup test after each training episode, we therefore in-
troduce a further split within the SRC by means of the
success predictor, which learns, using supervised learning,
to anticipate grasp success based on the current visual
information. The output of this module can then be used
by the reinforcement learner to determine the outcome of a
trajectory in lieu of an actual test. The prediction will be
represented using a standard feed-forward neural network
mapping object locations to success.

This bootstrapping approach offers the advantage of being
able to both generalize over both sparse data and represent
insecurities. Using a neural network as function approximator
does not result in a mere binary prediction of success or
failure, but a continuous one as illustrated in Fig. 3. Insecure
grasp positions that do not guarantee success, such as the
exact center of the image, result in intermediate network
activations, which can be interpreted as low prediction con-
fidences. By choosing an appropriate confidence threshold,
one can implement a desired amount of “caution”, and a high
threshold will result in a system that only attempts grasps at
points that guarantee success.

Learning this prediction separately from the controller’s
behavior can be expected to lead to an increased stability of
the learning process. The late discovery of insecure locations
during the training of the SRC would otherwise necessitate a
re-learning of the policy by propagating the new information
all the way from the target. In addition, by interpolating
the success map from a limited number of observations,
the required total system interaction time can potentially
be reduced, since most likely one of the two tasks will be
learned more quickly than the other, and we therefore avoid
having to continue collecting data for a task that has already
been learned completely.



V. L EARNING METHODS

As the aforementioned system components will be created
using several methods of machine learning, we will briefly
introduce the specific techniques used in the following.

Reinforcement learning problems are commonly repre-
sented as a Markov Decision Problem (MDP), a 4-tuple
{S,A, p, c} consisting of a set of system statesS, possible
actions A, a state transition functionp(s, a) → s′ and
a transition cost functionc(s, a, s′) → R. Notably, p is
unknown in our case, forcing us to perform model-free
reinforcement learning, and evenc is not completely known;
as mentioned in the previous section, the goal regionS+ is
not explicitly specified.

Once we have formulated our task as an MDP, we can
turn towards learning of the Q-function, which maps pairs
of states and actions to an expected remaining trajectory
cost. For discrete action sets, policies can be easily retrieved
online from this functionQ(s, a) → R for a given state
s by comparing the function values across possible actions
and choosing the one minimizing it, i.e.argminaQ(s, a).
The task of learning the Q-function will be solved using
Neural Fitted Q Iteration (NFQ) [15], a variant of Fitted
Value Iteration [32] tailored specifically to using a multi-
layer perceptron to approximate the Q-function. Since past
experiences are explicitly stored and reused throughout the
training process, the method performs in a particular stable
and data-efficient manner. While NFQ is a well-established
algorithm for reinforcement learning, the approach has thus
far not been applied successfully for grasp control due to the
difficulty of dealing with higher-dimensional actions coupled
with strong interaction time constraints.

Both the Q-function used in NFQ and the ones in the
two other constituents of our system are represented by
feed-forward multi-layer perceptrons, which are trained in
a supervised manner by providing pairs of input and desired
output patterns. The output error is minimized through the
application of backpropagation [33], which passes the error
from the output layer toward the input layer. To update the
local parameters of the network, the Rprop heuristic [34]
is used, a variation of momentum-based gradient descent.
Here, the momentum term is independent of the value of the
gradient itself, and adjusted only on the basis of changes in
its sign. This approach is known to lead to particularly fast
convergence of the learning process.

VI. SHORT-RANGE CONTROLLER TRAINING

The sub-task handled by the SRC most closely resembles
a classical combined reaching and preshaping task. Being the
focus of this work, its design will be described in particular
detail.

A. Problem Modeling

The problem can be stated as a Markov Decision Process,
which is then to be solved through reinforcement learning.
Sensory information about the object is incorporated in the
system states = {ιHx , ιHy , θ0, τz, vx, vy}.

Fig. 3. Activation of the success prediction network given normalized
camera coordinates as input. The contour line marks values above threshold,
which would cause a training episode to be considered as successful during
learning and trigger finger closure during execution. The two red regions
correspond to the edges of the bowl; their shift from the center and
asymmetry result from the highly skewed alignment of the camera within
the robot’s actuator, which is one of the challenges the system has to cope
with.

The object is represented by the center of gravity of its
projection in the camera, designated as(ιHx , ιHy ), which is
normalized in the interval[−1;+1].

Information about the robot is provided in the form of the
base joint’s current rotationθ0, the end-effector’s heightτz
and the Cartesian velocities of the actuator,vx andvy. At an
interval of 100ms, the system can take a three-dimensional
action a ∈ {−1, 0, 1}3, which translates to the direction of
movement in Cartesian space, performed by using the robot’s
inverse kinematics.

One integral part of the MDP, the cost function, is only
partially specified, since it is based on the success prediction
which is in turn implicitly represented in a neural network.
The net is trained through supervised learning using patterns
consisting of object positions(ιHx , ιHy ) in the camera as
input, and corresponding observed grasp test success as target
output. It thus realizes a mappingσ(ιHx , ιHy ) → [0; 1] which
can be used together with a prediction thresholdθ to define
the cost function as:

c(s′) =

{

0 if σ(ιHx , ιHy ) ≥ θ

0.01 otherwise

θ is chosen to be0.95, with the intent that insecurities should
be treated as failures to ensure maximum robustness.

It is worth noting that task failure does not result in high
costs, as one would usually assume. Instead, any observed
transition to the failure state is replaced by a virtual one from
the predecessor state to itself. By doing so, we avoid regions
of extremely high costs in the Q-function, which due to their
proximity to the target state could lower the perceived value
of the goal region, and thereby hinder learning.

B. Success Prediction

Since the cost function, and thus the training of the
reinforcement learner, requires the presence of the success
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Fig. 4. System architecture during the SRC reinforcement learning stage.
Neither LRC nor grasp modules are being used while the Q-function is being
updated, though the success prediction module is employed forcalculating
the costs.

prediction module, the latter is generated first. It is rep-
resented by a feed-forward network, this time with one
hidden layer of size 30. Prior to the reinforcement learning
phase, it is trained on 189 pairs of visual information and
success, which were acquired during earlier experiments.
This training lasts for 1000 Rprop epochs, after which the
test error converges. These samples, spanning most of the
camera state space, yield the prediction mapping presented
in Fig. 3.

C. Policy Acquisition

With the success prediction fixed, the resulting learning
system is as depicted in Fig. 4, where the prediction is used
to determine the costs.

The multi-layer perceptron used to approximate the sys-
tem’s Q-function is comprised of two hidden layers of size 20
each. During each episode, it is updated using Rprop for 300
epochs. These values were chosen based on past experiences,
and have been proven to be well-suited for many different
tasks [35]. While the number of epochs may not suffice for
the network to converge to the true output values given the
current observations, NFQ merely requires their magnitude
to be correct relatively to each other, rather than absolutely.

During training, the starting position of the actuator is
being varied randomly over an area of 35×20cm, while its
height is fixed at 10cm above the table. The target itself is
also placed at three different positions spaced 15cm apart,
with each being used with equal frequency.

The system alternates between greedy episodes, where the
best action returned by the current policy is used, and ones
during which standardǫ-greedy exploration is performed. We
choose a high probability ofǫ = 0.2 in order to ensure a
sufficient number of exploratory actions even during the short
total training duration that we expect. 300 such episodes are
performed, each followed by an NFQ update.

While the algorithm used offers no theoretical guarantees
that the algorithm will converge to an optimal solution, one
can, given sufficient data, expect policies to fluctuate around
one. This neccessitates an evaluation of the final policies
regarding their performance to locate the best possible result.
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Fig. 5. Number of failed grasps for the chosen policy from different initial
actuator positions relative to the target object. Positions within the shaded
region lie in the SRC’s activation area; again, asymmetry results from the
camera’s skewed alignment.

To allow the algorithm to stabilize as far as possible, an
additional 1000 updates are performed without interacting
with the robot, using only the transition data acquired thus
far. Not all of these are tested, but only the last 10 resulting
from the offline training stage. For each, grasp success is
determined for 10 initial arm poses, with the object located
centrally in the working area. Testing for a given policy is
aborted once it failed to pick the object up from any starting
pose.

D. Results

In total, training took up to 16 hours using a commodity
single-core Pentium 4 setup, though only 35 minutes were
needed for actual system interaction, and the remainder could
be reduced simply by using a more powerful computer and
employing parallelization. All policies were at least capable
of grasping at all but one target position, suggesting that
performance was fluctuating around the optimum rather than
diverging.

Three of the policies were able to perform a successful
grasp in every case, and only these policies were used in
a second, extended testing phase. Here, the position of the
target object was displaced to each side in by increasing
amounts of up to 15cm, and each of the resulting targets
was again tested for success from 10 relative robot poses.

Through this procedure, the policy with the highest relia-
bility over both target and starting pose variation was chosen.
As can be seen in Fig. 5, this policy managed to successfully
pick the bowl up at all positions lying in its activation area.
In fact, even those poses located further at the image border
resulted in a successful grasp in most cases, though this was
not required for the combined system.

VII. L ONG-RANGE CONTROLLER TRAINING

To allow the SRC to be usable for every possible target
object position, we must design the LRC in such a way
as to reliably provide visibility of the object in the hand
camera within its activation area. This can be achieved by



Fig. 6. Distance of the object in the hand camera from the image center
as a function of object position in task space. The peak of thedistribution
lies at0.8006, well within the range required for the SRC.

generating a camera transformation that generates rough
desired tool center point positions(τx, τy) from the object’s
image coordinates(ιTx , ι

T
y ). We use a multi-layer perceptron

to approximate this mapping, as its generalization ability
enables learning the relation from a limited number of
samples. Since the generation of a target position requires
only a forward pass of the current visual input through the
network, it can easily be re-evaluated for every new frame
provided by the camera, providing real-time control. The
third degree of freedom, the heightτz of the gripper, is fixed
at a value of 10cm, which was the same height from which
the SRC started during training. This pose can then be moved
towards by using the robot’s inverse kinematics.

A set of 758 pairs of camera positions and corresponding
robot poses are generated by placing the object in the
arm’s gripper and moving it along the working area. We
again choose a network with two hidden layers of 20 units,
which is trained on this set for 300 iterations of Rprop
gradient descent, after which the training error converges.
This training stage takes less than a minute.

After training, the LRC is evaluated by placing the target
at different positions in the robot’s working area, waitingfor
the system to move to the pose generated by the network,
and measuring the distance between the object position in the
camera and the image center. To reiterate, for a position to
lie within the SRC’s activation area, it would have to fulfill
the constraint that|ιHi | ≤ 0.9 for i ∈ {x, y}. Therefore we
merely need to computemaxi |ι

H
i | for each point and check

if it lies below 0.9, i.e. in the inner 90% of the visual area.
As can be seen in the evaluation results illustrated in

Fig. 6, this is clearly the case, with the distance never
even exceeding 0.8. Consequently, the LRC is capable of
generating admissible starting positions for the SRC for the
system’s entire working area.

VIII. C OMBINED PERFORMANCE

Our main goal, the system’s ability to grasp a target in
its working area, follows naturally from the combination
of its constituents. The SRC was capable of performing a
successful grasp from any initial position at which the object
was well visible in the hand camera, while the LRC has

been shown to ensure exactly this visibility. In this way
grasping can be achieved from arbitrary starting positionsin
the robot’s working range, regardless of the object’s position
and visibility in the hand camera. On average, performing
one entire grasp sequence takes about4.06 seconds from
starting to move until closing the fingers around the object.
This constitutes no significant difference to the4.35 seconds
needed by a human operator using a three-axis joystick and
the same speed settings. In addition, the architecture gives
rise to further traits, allowing the grasps to be performed
adaptively and reliably.

A. Object Pursuit

Thus far all evaluations have been performed in a com-
pletely static environment. But since we chose to design
our system specifically in a reactive feed-back manner to
deal with dynamic settings, it is also capable of adapting to
changes such as a moving object. To illustrate this ability,
we used the setup of a sub-task from the ICRA 2012
Mobile Manipulation Challenge [36], in which the bowl to be
grasped was placed on a turntable. By varying the distance
of the object to the table’s center we could effectively adjust
the speed and movement range of the object.

The maximum radius we examined was 10cm, as it was
the largest one possible to describe a path that lay within
the system’s 35cm×20cm training area, outside of which
its behavior could not be predicted. This amount, which
corresponded to an object speed of 2.1cm/sec, still allowed
reliable grasping by pursuing the object as illustrated in
Fig. 7.

B. Robustness against Vision Errors

In addition, our system also attains robustness against
various types of sensor errors.

The use of a short-range eye-in-hand controller enables it
to cope with errors relating to the localization of the target
object by the table-mounted camera. Despite the fairly robust
color segmentation used here, large errors can be expected
to result temporarily from occlusion of the object by the
gripper itself, as well as smaller ones for longer times due
to changes in lighting conditions. We therefore tested the
LRC’s ability to still reach the SRC’s activation area even
with an error applied to the camera projection(ιTx , ι

T
y ). SRC

activation and thus grasp success could still be maintainedup
to an error of 3.5◦ in any direction, which, given the size and
distance of the bowl, corresponds to an occlusion of roughly
one third of the object.

A second type of error is constituted by general camera
noise, which leads to small fluctuations in the detected object
projections. Such noise appears and disappears rapidly andis
thus naturally compensated for by the reactive architecture,
which prevents short-term errors from having a lasting effect.

IX. D ISCUSSION& OUTLOOK

Our system has been shown to perform its intended task
reliably, being able to pick up an object in its working
range for arbitrary initial positions of arm or target. This



Fig. 7. An example grasp sequence performed by the final system on a moving object.

was possible even in the presence of vision errors or if the
object was moving.

Given our goal of including only minimal amounts of task-
related prior knowledge in our system, a brief summary of
the information used is in order. For one, the split of the sys-
tem into several components and the assignment of specific
pieces of sensor information can be considered to require a
degree of understanding of the problem solution. However,
such an amount of modeling is ultimately unavoidable in
any robotic system that does not use forgo representations
entirely [37], and does not constitute any information about
how the problem is to be solved.

While we do not use a model of the process, we do employ
an inverse kinematics model to move the robot in Cartesian
space, particularly in the case of the LRC. The reasons for
this were primarily of technical nature, as controlling the
robot in joint space would have disabled security features
that avoid collisions with itself and the environment, which
is obviously undesirable in a system intended to learn purely
by exploring its action space. But even beyond that, we argue
that since the reinforcement learning methods used do not
make any assumption about how the actions generated by
the controllers are interpreted, the approach should work just
as well if controlling the robot in joint space. Ultimately,
the overall amount of expert knowledge is still lower than
in other contemporary systems, as it avoids aids such as a
process model, object models, calibration, or demonstrations
of the solution, and in the case of the SRC even of the desired
goal.

As the LRC was secondary to the SRC, the implementa-
tion we used was comparatively simple, though sufficient to
solve the task at hand. Future improvements could include
training it in the same manner as the SRC through reinforce-
ment learning with only a different goal state. By learning
to adapt to factors such as the skew of the camera, it might
contribute further to the robustness of the combined system.

Currently, the system’s ability to pursue the object results
purely from its reactive design. By including object move-
ment in the training process, an implicit movement prediction
could be acquired and even more robust strategies learned.

The limited depth discrimination ability of the LRC could
be solved by replacing the single table-mounted camera with
a stereo setup, which would increase the system’s working
area. While preliminary attempts show promise, the difficulty
of processing three camera streams in real time precludes the

use of such an arrangement at present.
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