
A Case Study on Improving

Defense Behavior in Soccer Simulation 2D:

The NeuroHassle Approach

Thomas Gabel, Martin Riedmiller, and Florian Trost

Neuroinformatics Group
Institute of Mathematics and Computer Science

Institute of Cognitive Science
University of Osnabrück, 49069 Osnabrück, Germany

{thomas.gabel|martin.riedmiller}@uos.de, floriantrost@gmx.net

Abstract. While a lot of papers on RoboCup’s robotic 2D soccer sim-
ulation have focused on the players’ offensive behavior, there are only
a few papers that specifically address a team’s defense strategy. In this
paper, we consider a defense scenario of crucial importance: We focus
on situations where one of our players must interfere and disturb an
opponent ball leading player in order to scotch the opponent team’s at-
tack at an early stage and, even better, to eventually conquer the ball
initiating a counter attack. We employ a reinforcement learning method-
ology that enables our players to autonomously acquire such an aggres-
sive duel behavior, and we have embedded it into our soccer simulation
team’s defensive strategy. Employing the learned NeuroHassle policy in
our competition team, we were able to clearly improve the capabilities
of our defense and, thus, to increase the performance of our team as a
whole.

1 Introduction

Over the years, RoboCup simulated soccer has turned out to be a highly attrac-
tive domain for applying machine learning and artificial intelligence approaches
[1]. Beyond the scientific focus and the goal of beating the human soccer World
Champion team in 2050, the annual RoboCup competitions also represent a
highly competitive event. Consequently, if a team participating in a RoboCup
tournament aims not just at exploring learning approaches in this application
field, but also at using player behaviors, that were obtained with the help of
some learning approach, during competitions, then there is a natural desire that
also the AI-based player capabilities represent optimal or at least near-optimal
behavior policies, so that their employment does not worsen the overall quality
of playing.

This, of course, also holds true for a team’s defense. Research in soccer sim-
ulation, however, has to the biggest part focused on offensive playing. To this
end, mainly the tasks of passing and scoring [2, 3] were addressed, as well as

the positioning of players not in ball possession [4, 5]. Moreover, there were also
studies that considered offensive playing in a holistic manner [6, 7]. By contrast,
the challenges of using learning approaches for a team’s defensive capabilities
have almost been neglected. A notable exception in this regard represents the
work on positioning defending players [8]. Generally, defensive playing strategies
comprise two core sub-tasks: On the one hand, there is the task of positioning
players in free space so as to intercept opponent passes or to cover or mark
opponent players. On the other hand, there must be a player that attacks the
opponent ball leading player, interferes him, hassles him, and aims at bringing
the ball under his control. While the paper mentioned before [8] focuses on the
former task of positioning, the work at hand presents a case study concerning
the latter: Using a reinforcement learning (RL) methodology, we aim at acquir-
ing an aggressive player behavior which makes the learning agent interfere and
hassle a ball leading opponent player effectively. Because the RL approach em-
ployed makes use of neural net-based value function approximation, we call the
resulting behavior NeuroHassle, subsequently. The policy we obtained clearly
surpasses any hand-coded approach for this task and improved our team’s de-
fensive strength significantly. With respect to the remarks made at the begin-
ning of this section, a noteworthy property of the acquired hassling policy is its
high degree of competitiveness which allowed us to integrate NeuroHassle into
our competition team Brainstormers and to employ it successfully at RoboCup
2007 in Atlanta.

Section 2 provides some foundations on RL and on the soccer simulation
environment. In Section 3, we introduce in detail our learning methodology and
algorithm, whereas Section 4 evaluates the learning results empirically and dis-
cusses the integration of the acquired hassling policy with our competition team.

2 Basics

One reason for the attractiveness of reinforcement learning (RL) [9] is its appli-
cability to unknown environments with unidentified dynamics, where an agent
acquires its behavior by repeated interaction with the environment on the ba-
sis of success and failure signals. This situation is, also, given when an initially
clueless soccer-playing agent is faced with the task of conquering the ball from
an opponent ball leading player (of an adversary team regarding whose drib-
bling capabilities nothing is known). Accordingly, the usage of RL to tackle this
learning problem is very promising. A more comprehensive review of our efforts
on utilizing neural reinforcement learning methods in the scope of the RoboCup
soccer simulation 2D League can be found in [6, 10].

In each time step an RL agent observes the environmental state and makes a
decision for a specific action, which may incur an immediate reward generated by
the environment and, furthermore, transfers the agent to some successor state.
The agent’s goal is not to maximize its immediate reward, but its long-term,
expected reward. To do so it must learn a decision policy π that is used to
determine the best action in any state. Such a policy is a function that maps

the current state s ∈ S to an action a from a set of viable actions A and the
goal is to learn the mapping π : S → A only on the basis of the rewards the
agent gets from its environment. By repeatedly performing actions and observ-
ing resulting rewards, the agent tries to improve and fine-tune its policy. The
respective reinforcement learning algorithm used specifies how experience from
past interaction is used to adapt the policy. Assuming that a sufficient amount
of states has been observed and rewards have been received, the optimal policy
may have been found and an agent following that policy will behave perfectly in
the particular environment.

Reinforcement learning problems are usually formalized using Markov Deci-
sion Processes (MDPs) [11], where an MDP is a 4-tuple [S, A, r, p] with S as the
set of states, A the set of actions the agent can perform, and r : S × A → R

a function of immediate rewards r(s, a) (also called costs of actions) that arise
when taking action a in state s. Function p : S ×A×S → [0, 1] depicts a proba-
bility distribution p(s, a, s′) that tells how likely it is to end up in state s′ when
performing action a in state s. Trying to act optimally, the agent needs a facility
to differentiate between the desirability of possible successor states, in order to
decide on a good action. A common way to rank states is by computing a state
value function V π : S → R that estimates the future rewards that are to be
expected when starting in a specific state s and taking actions determined by
policy π from then on. In this work, our goal is to learn a value function for the
hassling problem that we shall represent using multilayer neural networks. If we
assume to be in possession of an optimal state value function V ⋆, it is easy to
infer the corresponding optimal behavior policy by exploiting that value function
greedily according to π⋆(s) := argmaxa∈A{r(s, a) +

∑
s∈S p(s, a, s′) · V ⋆(s′)}.

The Soccer Server [12] is a software that allows agents in the soccer simulation
2D League to play soccer in a client/server-based style: It simulates the play-
ing field, communication, the environment and its dynamics, while the clients
– eleven agents per team – are permitted to send their intended actions (e.g. a
parameterized kick or dash command) once per simulation cycle to the server.
Then, the server takes all agents’ actions into account, computes the subsequent
world state and provides all agents with information about their environment.
Therefore, while the reward function is unknown to the agent, in soccer simu-
lation the transition function p (model of the environment) is given since the
way the Soccer Server simulates a soccer match is known. In the hassling task,
however, the situation is aggravated: The presence of an adversary whose next
actions cannot be controlled and hardly be predicted makes it impossible to ac-
curately anticipate the successor state. Hence, only a rough approximation of
p, that merely takes into account that part of the state that can be directly be
influenced by the learning agent, is available.

3 Learning a Duel Behavior: The NeuroHassle Approach

“Aggressive playing” is a collocation frequently used in today’s press coverage of
human soccer-playing. By aggressiveness it is usually referred to a player’s will-

ingness to interfere the opponent team’s game build-up early and, in particular,
to quickly and efficiently hassle and attack opponent ball leading players, which
is often considered to be crucial for a team’s success.

3.1 Outline of the Learning Approach

The Brainstormers’ former approach for letting players duel with opponent ball
leaders for the ball was a rather naive one: The player next to the opponent
ball leading player simply moved towards the ball leader and towards the ball,
respectively, in order to try to bring the ball into his kickable area. Needless to say
that such a straightforward strategy is not difficult to overcome. Consequently,
our players failed in conquering the ball in almost two thirds of all attempts – in
particular when playing against teams with highly developed dribble behaviors.

A general strategy to hassle an opponent with the goal of conquering the ball
is difficult to implement because

– the task itself is far beyond trivial and its degree of difficulty heavily depends
on the respective adversary,

– there is a high danger of creating an over-specialized behavior that works
well against some teams, but performs poorly against others, and

– duels between players (one without and the other with the ball in his pos-
session) are of high importance for the team as a whole since they may bring
about ball possession, but also bear some risk, if, for example, a defending
player looses his duel, is overrun by the dribbling player, and thus opens a
scoring opportunity for the opponent team.

To handle these challenges holistically, we decided to employ a neural re-
inforcement learning approach that allows our players to train the hassling of
opponent ball leading players. The state space for the problem at hand is con-
tinuous and high-dimensional; we restricted ourselves to 9 state dimensions:

– distance d between our player and the opponent ball leading player
– velocity (vx and vy component) of our player
– absolute value vopp of the opponent’s velocity
– position (bx and by component) of the ball
– our player’s body angle α relative to the opponent’s position
– opponent player’s body angle β relative to his direction towards our goal1

– value of the strategic angle γ = ∠GOM with G as position of our goal, O

as position of the opponent, and M as the position of our player

There are three important remarks to be made concerning that state repre-
sentation. First, to simplify the state representation the center of the coordinate
system is placed in the center of our player and the abscissa cuts through our
and the opponent player. Yet, by the two features listed last, also the position
of the hassling situation on the playing field is taken into account. Second, these

1 Most dribbling players are heading towards the opponent team’s goal when being
allowed to dribble freely without interference.

nine state features do not fully represent the actual state (e.g. the adversary’s
exact velocity vector is unknown and cannot be inferred), yet the degree of par-
tial observability is kept low. And third, the high dimensionality of the problem
space requires the use of value function approximation mechanisms if we aim at
applying value function-based reinforcement learning. To this end, we rely on
multilayer perceptron neural networks.

The learning agent is allowed to use dash(x) and turn(y) commands where
the domains of bots commands’ parameters (x ∈ [−100, 100], y ∈ [−180◦, 180◦])
are discretized such that in total 76 actions are available to the agent at each
time step.

Opponent:
- random position
- random velocity
- random body angle
- ball in kickrange

Ball

Towards
own goal

Own Player:
- random velocity
- random body angle 3m

5m

Fig. 1. General Training Scenario for Learning to Hassle Opponent Ball Leading Play-
ers

3.2 Training Situations and Training Regions

We designed a specialized set of training situations S for the learning agent
(|S| = 5000) which is visualized in Figure 1. It basically consists of two semicir-
cles across which the opponent ball leading player is placed randomly, whereas
our learning player resides in the center. While the semicircle that lies in the
direction towards our goal (defensive direction) has a radius of 3.0m, the one
in the opposite (offensive) direction is larger (5.0m). The intention behind that
design of starting situations is that, on the one hand, the ball leading opponent
typically starts immediately to dribble towards our goal, whereas the learning
agent must interfere and try to hinder him from making progress. On the other
hand, the intended hassle behavior shall be primarily applied in situations where
our player is closer to our goal or where the opponent ball leader has only a small
head start. Regarding the remaining state space dimensions, the ball is always
randomly placed in the ball leading player’s kickable area with zero velocity, and
the velocities of both players as well as their body angles are chosen randomly
as well.

Moreover, we defined four training regions on the playing field as sketched in
Figure 2. The midfield training region is situated at the center of the field, the
central defensive region is halfway on the way towards our goal. Finally, there
are a left and a right defensive region that are placed near the corners of the
field with a distance of 25 meters to our goal. The idea behind this definition
of different training and testing places is that dribbling players are very likely
to behave differently depending on where they are positioned on the field. As a
consequence, a duel for the ball may proceed very differently depending on the
current position on the field. It is worth noting that the sets of situations used
for the defensive left and right scenario are turned by approximately ±70◦ so
that the smaller semicircle of starting positions for the ball leading opponent is
oriented towards our goal.

defensiveLeft

defensiveRight

defensiveCentre

midfield

Fig. 2. Considered Sets of Training and Test Situations on the Playing Field

3.3 A Note on Training Opponents

For training, of course, an adversary team is required. In the learning experi-
ments we conducted, however, we did not employ an entire team, but just started
a single player from each team involved2. We found that among the 16 published
team binaries of RoboCup 2006 in Bremen, there were 2 binaries that were not
functioning at all, 3 had severe problems (players crashing) with the player repo-
sitioning that necessarily must be made by the coach program during training, 6
were not usable for training (they feature dribbling behaviors that are seemingly
inappropriate for the use during training, e.g. most of them kicked the ball just

2 Additionally, we started a goalkeeper as “support” for the learning player, since
otherwise the ball leading player is sometimes mislead to shoot on the empty goal
from a rather long distance.

straight away), and 5 binaries seemed to be usable for our purposes. Since we
preferred strong opponent teams with well developed dribbling capabilities, we
additionally made use of two older champion binaries (teams STEP and UvA
Trilearn in their version from 2005).

3.4 Successful Episodes and Failures

A highly important issue concerns the question whether a single hassling episode,
i.e. a single duel for the ball, was successful or not. Here, simply distinguish-
ing between episodes during which the ball could be brought into the hassling
player’s kickable area or not, is not adequate – a more sophisticated differenti-
ation is crucial for properly assessing the hassling capabilities acquired and is
also essential for the use of a reinforcement learning approach.

After a careful analysis of the learning setting and of the way opponent ball
leading players may behave during training, we found that the following five
main outcomes of a training episode must be distinguished.

a) Erroneous Episode A training episode can fail for many reasons. The drib-
bling player may lose the ball, the ball may go out of the field, a player may
have not localized himself correctly and thus behave suboptimally, to name
just a few. If any of these indications is perceived, then the corresponding
episode is ended and abolished.

b) Success A hassling episode can be considered successful, if the ball has
been brought into the learning player’s kickable area or if it has managed to
position in such a manner that issuing a tackle command yields a successful
tackle for the ball with very high probability.

c) Opponent Panic It may also happen that the ball leading opponent player
simply kicks the ball away (usually forwards), as soon as the learning agent
has approached or hassled him too much, or if it simply considers his situa-
tion to be too hopeless to continue dribbling. Consequently, if an opponent
issues such a kind of a panic kick, the episode under consideration may be
regarded as a draw.

d) Failure The hassling player fails, if none of the other cases has occurred. In
particular, this means that the ball leading player has kept the ball in its kick
range, or has even overrun the learning agent and escaped more than 7m

from him, or has approached the goal such that a goal shot might become
promising.

e) Time Out We allocate a maximal episode duration of 35 time steps. If none
of the cases mentioned before has occurred until that time, then the hassling
episode is ended without a clear winner.

3.5 The Learning Algorithm

Temporal difference (TD) methods comprise a set of RL algorithms that in-
crementally update state value functions V (s) after each transition (from state
s to s′) the agent has gone through. This is particularly useful when learning

along trajectories (s0, s1, . . . , sN) – as we do here – starting in some starting
state s0 and ending up in some terminal state sN ∈ G. So, learning can be
performed online, i.e. the processes of collecting (simulated) experience, and
learning the value function run in parallel. Learning to hassle, we update the
value function’s estimates according to the TD(1) update rule [13], where the
new estimate for V (sk) is calculated as V (sk) := (1−α) ·V (sk)+α ·ret(sk) with

ret(sk) =
∑N

j=k r(sk, π(sk)) indicating the summed rewards following state sk

and α as a learning rate. Each time step incurs small negative rewards, a success
goal state a large positive one, and the final state of a failure episode a large
negative one.

We did also a number of tests concerning the usage of episodes that ended
in some kind of a draw, i.e. in time-out episodes and in episodes where the
adversary got into panic and kicked the ball straight away. Since an episode
with a time-out is rather difficult to assess, we decided to not use those episodes
during training. The probability of an opponent kicking the ball away when under
high pressure, strongly depends on the respective opponent’s dribbling behavior.
For example, players from team TokyoTech frequently tend to perform panic
kicks, even if the dribbling player is not yet under real pressure. Therefore, when
training against such opponents it may be advisable to interpret panic kicks as
failures, since, from the hassling player’s perspective, the goal of bringing the
ball into his control could not be achieved. As far as the learning results reported
subsequently are concerned, we restricted ourselves to opponents with normal
dribble behavior that do not panically and prematurely kick the ball away.

Due to the continuous, 9-dimensional state space to be covered a tabular
representation of the state value function is impossible and instead the employ-
ment of a function approximator is necessary. For this task, we employ multi-
layer perceptron neural networks with one hidden layer containing 18 neurons
with sigmoidal activation function (hence, a 9:18:1-topology). We perform neu-
ral network training in batch mode: Repeatedly a number of training episodes is
simulated and in so doing a set of representative states S̃ ⊂ S is incrementally
built up where for each s ∈ S̃ we have an estimated value V (s) calculated as
mentioned above. We do not discard old training instances and invoke a retrain-
ing of the neural network each time |S̃| has been incremented by 250 instances.
Let the state value function approximation provided by the net be denoted as
Ṽ (s, w) where w corresponds to a vector of tunable parameters, i.e. the net’s
connection weights. Then, the actual training means determining w by solving
the least squares optimization problem minw

∑
s∈S̃(Ṽ (s, w) − V (s))2. For the

minimization we rely on the efficient back-propagation variant RPROP [14].

4 Empirical Evaluation

To simplify training, the view restrictions imposed by the simulation environ-
ment (normally the Soccer Server provides agents only with information about
objects in a restricted view cone) are turned off during learning, so that the
learning agent obtains full state information.

4.1 Training to Hassle

Since the learning task is episodic, we do not use discounting. Further, we use a
learning rate α of 1.0 and employ a purely greedy policy during training, since
the neural network-based approximation of V in combination with the large sets
of random episode start situations brings about a sufficient level of state space
exploration. Figure 3 shows the learning curves for an example of a hassle learn-
ing experiment. Here, the neural network representing the value function from
which a greedy policy is induced has been trained against the champion binary
of WrightEagle (2006) for midfield training situations. Apparently, the initially
clueless learning agent quickly improves its behavior and finally succeeds in suc-
cessfully conquering the ball in more than 80% of all attempts. In particular,
the number of failure episodes is extremely reduced (to less than 5%) which
highlights the effectiveness of this learning approach.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Episodes

Success
TimeOut
OppPanic
Failure

Fig. 3. Exemplary Learning Curve for Learning to Hassle (opponent during training:
Wright Eagle, binary from RoboCup 2006)

4.2 Testing the NeuroHassle Performance

Being trained against a single opponent team, the danger arises that the resulting
behavior is over-specialized, does not generalize very well, and performs poorly
against other teams. For this reason, we trained our hassling policy against a
selection of teams and for different sets of training situations (on different places
on the field). Having obtained a larger number candidate hassle behaviors in
this way, it is in principle possible to utilize the corresponding highly specialized
hassling policy depending on the current situation. E.g., when playing against
UvA Trilearn and given that the ball leading opponent is positioned at (−36, 24),

it is most likely that the hassling policy performing best is the one that has been
acquired when training against UvA for the defensiveLeft training set.

Apart from that, we are aware that the effectiveness of the policy obtained
will be influenced by the presence of further opponent teammates. Then, of
course, the ball leading opponent may behave differently, for example, it may play
a pass quite a time before it is seriously hassled. However, if the defensive strategy
is customized to support the intended aggressive hassling of the ball leader, and
if it can be achieved that other adversary players are covered appropriately so
that no passing opportunity arises (e.g. [8] focuses on that problem), then it is
very likely that, during a real match, the ball leading player behaves similarly
as during a training session.

58% 10% 25%
7%

54% 10% 29%
7%

60%
6%

30%
4%

67%
7%

21%
5%

48%
6%

34%

12%

48%
5%

31%
17%

37% 5%

42%

16%

37%

3%
39%

20%

61%
9% 16% 14%

61%
4%

18% 17%

33%

6%

51%

10% 14%
4%

68% 13%

92%
7% 1% 1%

92%
7% 0% 1%

87%
9% 1% 2%

85%
10% 2% 3%

78%
13% 5% 4%

76%
13% 5% 6%

79%
13% 5% 3%

77%
14% 6% 3%

Wright
Eagle

Tokyo
Tech

STEP CZU

UVA

Success
TimeOut
OppPanic
Failure

Fig. 4. Generalization Capabilities of the Acquired NeuroHassle Behavior against Var-
ious Opponent Teams and for Different Test Situation Sets

In practice, unfortunately, the above-mentioned approach of employing a
large ensemble of highly specialized policies (trained against various opponents
and for varying position sets on the field, becomes quickly intractable: First, as
discussed before (Section 3.3) it is impossible to acquire a specialized hassling
behavior for every potential opponent since the binaries of most teams are not
useful for training to hassle against them. And, of course, at times new teams
appear for which no binary to be used as training partner is available at all.
Second, each team changes from year to year. Hence, the risk of overfitting the
hassling policy subject to a specific version of a certain team should not be
underestimated.

Consequently, it has been our overall goal to create a hassling policy that
generalizes very well over a number of teams (at least over those against which

we could test and, in particular, against those teams that are still active). Figure
4 visualizes the performance of our NeuroHassle behavior when dueling against a
selection of adversary teams and subject to test situations on different places on
the playing field. Since a minimization of the share of failures is our main goal,
one can conclude that the behavior acquired is quite effective. In any scenario
considered the failure rates are not higher than 20%. Employing the learned
NeuroHassle policy in our competition team Brainstormers was one of the cru-
cial moves for winning the World Championships tournament RoboCup 2007 in
Atlanta.

4.3 Integration into the Competition Team

Designing a strong team defense strategy represents an extremely challenging
(and fragile) task when developing a soccer simulation team. It is well-known
that in a defensive situation, i.e. when the ball is under control of the opponent
team, the players’ mission is to either (a) cover opponent players and block po-
tential pass ways, or (b) to try to conquer the ball from the ball leader while
simultaneously hindering him from dribbling ahead. Moreover, both tasks have
to be assigned to the defending team’s players in such a manner that no conflicts
arise (e.g. no two players decide for hassling the ball leader in parallel while an-
other opponent remains uncovered) and such that collaborative defense utility
is maximized. Generally, it is advisable to select the player closest to the ball
leading opponent for executing task (b), whereas the remaining players perform
task (a), although a number of exceptional situations exist. A thorough discus-
sion of this issue as well as of how to best solve task (a) is beyond the scope of
this paper (see, for example, [8] for more details on these points).

We finish this section with providing some numbers on the utilization of the
NeuroHassle policy during actual games against strong opponent teams. During
the run of a standard game (6000 time steps), the players of our team start
on average 66 hassling episodes. Therefore, even under the very conservative
assumption that only about half of all hassle attempts are successful, we can
draw the conclusion that the NeuroHassle behavior allows for conquering the
ball at least 30 times per game. Furthermore, we determined that on average an
opponent ball leading player is being hassled by one of our players during approx-
imately 41.2% of the time he is in ball possession (ball within kick range). This
corresponds to a NeuroHassle usage share of circa 14.8% in defensive situations
during which the opponent team is building up its attack.

5 Summary

In this paper, we have reported on a comprehensive case study in RoboCup
simulated soccer that aims at acquiring a defensive behavior which is meant to
disturb an opponent ball leader and to reconquer the ball from him – a capability
which is of substantial importance for team success. We developed a comprehen-
sive set of training scenarios and pursued a reinforcement learning method based

on neural value function approximation to obtain a good hassle policy for our
Brainstormers soccer simulation 2D team. The empirical results of applying the
acquired policy against various opponent teams were highly encouraging. Conse-
quently, we also successfully applied the described NeuroHassle behavior during
2007’s RoboCup World Championships tournament.

Generally, prior to new tournaments a retraining of the NeuroHassle policy
must be performed so that it is up-to-date with recent changes introduced in
opponent teams’ strategies. Apart from that, in future work we also plan to let
the agent train against different training opponents that are exchanged from time
to time (during a single training session) so that the generalization capabilities
can be further increased.

References

1. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., abd H. Matsubara, E.O.: RoboCup:
A Challenge Problem for AI. AI Magazine 18 (1997) 73–85

2. Kyrylov, V., Greber, M., Bergman, D.: Multi-Criteria Optimization of Ball Passing
in Simulated Soccer. Journal of Multi-Criteria Decision Analysis 13 (2005) 103–113

3. Stone, P., Sutton, R., Kuhlmann, G.: Reinforcement Learning for RoboCup-Soccer
Keepaway. Adaptive Bahvior 13 (2005) 165–188

4. Dashti, H., Aghaeepour, N., Asadi, S., Bastani, M., Delafkar, Z., Disfani, F.,
Ghaderi, S., Kamali, S.: Dynamic Positioning Based on Voronoi Cells (DPVC).
In: RoboCup-2005: Robot Soccer World Cup IX, Berlin, Springer (2006)

5. Reis, L., Lau, N., Oliveira, E.: Situation Based Strategic Positioning for Coor-
dinating a Team of Homogeneous Agents. In: Balancing Reactivity and Social
Deliberation in Multi-Agent System, LNCS, Berlin, Springer (2001) 175–197

6. Riedmiller, M., Gabel, T.: On Experiences in a Complex and Competitive Gaming
Domain: Reinforcement Learning Meets RoboCup. In: Proceedings of the 3rd IEEE
Symposium on Computational Intelligence and Games (CIG 2007), Honolulu, USA,
IEEE Press (2007) 68–75

7. Kalyanakrishnan, S., Liu, Y., Stone, P.: Half Field Offense in RoboCup Soccer: A
Multiagent Reinforcement Learning Case Study. In: RoboCup-2006: Robot Soccer
World Cup X, Berlin, Springer Verlag (2007) 72–85

8. Kyrylov, V., Hou, E.: While the Ball in the Digital Soccer Is Rolling, Where the
Non-Player Characters Should Go in a Defensive Situation? In: Proceedings of
Future Play, Toronto, Canada (2007) 13–17

9. Sutton, R.S., Barto, A.G.: Reinforcement Learning. An Introduction. MIT Press/A
Bradford Book, Cambridge, USA (1998)

10. Gabel, T., Riedmiller, M.: Learning a Partial Behavior for a Competitive Robotic
Soccer Agent. KI Zeitschrift 20 (2006) 18–23

11. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro Dynamic Programming. Athena Scientific,
Belmont, USA (1996)

12. Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer Server: A Tool for Research
on Multi-Agent Systems. Applied Artificial Intelligence 12 (1998) 233–250

13. Sutton, R.S.: Learning to Predict by the Methods of Temporal Differences. Machine
Learning 3 (1988) 9–44

14. Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation
Learning: The RPROP Algorithm. In Ruspini, H., ed.: Proceedings of the Inter-
national Conference on Neural Networks (ICNN), San Francisco (1993) 586–591

