
Multi-agent Case-Based Reasoning
for Cooperative Reinforcement Learners

Thomas Gabel and Martin Riedmiller

Neuroinformatics Group
Department of Mathematics and Computer Science

Institute of Cognitive Science
University of Osnabrück, 49069 Osnabrück, Germany

{thomas.gabel, martin.riedmiller}@uni-osnabrueck.de

Abstract. In both research fields, Case-Based Reasoning and Reinforce-
ment Learning, the system under consideration gains its expertise from
experience. Utilizing this fundamental common ground as well as further
characteristics and results of these two disciplines, in this paper we de-
velop an approach that facilitates the distributed learning of behaviour
policies in cooperative multi-agent domains without communication be-
tween the learning agents. We evaluate our algorithms in a case study in
reactive production scheduling.

1 Introduction

A reinforcement learning (RL) agent must acquire its behavior policy by re-
peatedly collecting experience within its environment. Usually, that experience
is then processed into a state or state-action value function, from which an
appropriate behaviour policy can be induced easily [21]. When applying RL ap-
proaches to complex and/or real-world domains, typically some kind of function
approximation mechanism to represent the value function has to be used. While
in previous work [5], we have explored the use of case-based methods for that
specific task, the CBR component will play a similar, yet more prominent role
in this paper.

Just like a reinforcement learner, a CBR system’s competence is based upon
the experience it comprises. One main difference is, however, that this experience
is not processed mathematically into some kind of value function, but explicitly
stored in the system’s case base. Furthermore, it is rather unusual to speak
of autonomous agents in CBR settings. This difference, however, is of minor
importance, since it represents a question of notion and reflects only two different
views of describing how the system acquires its experience.

Multi-agent domains in which autonomous agents act entirely independently
are faced with the problem that the agents behave without any form of central
control in a shared environment, having the goal to learn a behaviour policy
that is optimal for the respective environment. This heavily increases the de-
gree of difficulty of learning compared to single-agent scenarios. In earlier work
[9], we presented an experience- and Q learning-based reinforcement learning

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 32–46, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multi-agent Case-Based Reasoning 33

algorithm for multi-agent learning of independent learners in general stochas-
tic environments. In a data-efficient version, this algorithm has been proven to
feature convergence to the optimal joint policy. In that version, however, it is
applicable to problems with finite and small state spaces and has been shown to
perform well for a small “climbing game” [4], only.

In this paper, we will extend that algorithm and embed it into a CBR frame-
work. Despite losing guarantees of theoretical convergence to the optimum, we
will show that our approach can be applied successfully to larger-scale, real-world
tasks. For the purpose of evaluation, we focus on complex application scenarios
of reactive production scheduling, in particular on job-shop scheduling tasks [16].

The remainder of this paper is structured as follows. In Section 2 we clarify
the problem statement for this paper by focusing on multi-agent reinforcement
learning, highlighting its difficulties and reviewing in short the experience-based
multi-agent learning algorithm mentioned. Furthermore, relevant related work is
highlighted. Section 3 introduces our multi-agent CBR approach and discusses is-
sues of case modelling and distributed case-based value function approximation.
In Section 4 we introduce and explain in detail our case-based reinforcement
learning algorithm for independent learners. Section 5 depicts the application
field of reactive production scheduling and summarises the results of a set of ex-
perimental evaluations, applying our approach to job-shop scheduling problems.
Finally, Section 6 concludes and points to ongoing and future work.

2 Distributed Reinforcement Learning

Promising a way to program agents without explicitly encoding problem-solving
routines, reinforcement learning approaches have been attracting much interest
in the machine learning and artificial intelligence communities during the past
decades. Traditional reinforcement learning approaches are concerned with single
agents that act autonomously in their environment and seek for an optimal
behaviour. In many applications, however, interaction and/or coordination with
other agents is of crucial importance to achieve some goal.

2.1 From One to m Agents

The standard approach to modelling reinforcement learning problems is to use
Markov Decision Processes (MDP). An MDP is a 4-tuple (A, S, r, p) where S
and A denote the state and action spaces, respectively, p : S ×A×S → [0, 1] is a
probabilistic state transition function with p(s, a, s′) describing the probability
to end up in s′ when taking action a in state s. Moreover, r : S × A → R is
a reward function that denotes the immediate reward that is obtained when
taking a specific action in some state. In search of an optimal behaviour, the
learning agent must differentiate between the value of possible successor states
or the value of taking a specific action in a certain state. Typically, this kind of
ranking is made by computing a state or state-action value function, V : S → R

or Q : S × A → R. For more basics and a thorough review of state-of-the-art
reinforcement learning methods we refer to [21].

34 T. Gabel and M. Riedmiller

If there is no explicit model of the environment and of the reward structure
available, Q learning is one of the reinforcement learning methods of choice to
learn a state-action value function for the problem at hand [26]. It updates
directly the estimates for the values of state-action pairs according to

Q(s, a) := (1 − α)Q(s, a) + α(r(s, a) + maxb∈A(s′)Q(s′, b)) (1)

where the successor state s′ and the immediate reward r(s, a) are generated
by simulation or by interaction with a real process. For the case of finite state
and action spaces where the Q function can be represented using a look-up
table, there are convergence guarantees that say that Q learning converges to
the optimal value function Q�, assumed that all state-action pairs are visited
infinitely often and that α diminishes appropriately. Given convergence to Q�,
the optimal policy π� can be induced by greedy exploitation of Q according to
π�(s) = argmaxa∈A(s) Q�(s, a).

If there are multiple agents acting concurrently, actions are vectors of individ-
ual actions. Each agent i contributes its own action component ai – to be termed
elementary action subsequently – to the joint action vector a. Given the current
state and the joint action vector the environment transitions to a successor state
s′, while at the same time all agents receive the (global) reward signal r. The
agents’ overall goal is to find an optimal joint behaviour policy, i.e. a mapping
from states to actions, that maximises the sum of expected rewards [1].

In [4] the distinction between joint-action learners and independent learners is
introduced. While the former know about the actions taken by the other agents,
the latter only know about their own contribution ai to the joint action. As
a consequence of their lack of action information, the attempt to estimate an
elementary action’s value in a specific state would most likely fail: The reward
signals for different joint action vectors (differing in the action contributions of
the other agents) would mix for any state s and any elementary action ai. In
this paper, we focus on independent learners: As argued before, the key problem
of independent reinforcement learners is that they must somehow be enabled to
distinguish between different joint actions to which they contributed the same
elementary action. We shall explore that issue more thoroughly in the following.

2.2 Core Ideas of a Learning Algorithm for Independent Learners

In [9] we presented an algorithm that realises the idea of implicit agent co-
ordination: Each agent is endowed with the capability to differ between joint
action vectors without knowing what the joint actions are, i.e. without knowing
which elementary actions are taken by the other agents. As follows, we briefly
summarise the core ideas of that algorithm, while in Sections 3 and 4 we further-
develop and fully integrate it into a CBR framework.

Implicit Coordination: Each agent i manages for each state s ∈ S an experi-
ence list Ei(s), which on the one hand contains exactly one entry e for every
joint action vector and on the other hand for reasons of efficiency is sorted
with respect to the estimated value of that piece of experience. The list entry

Multi-agent Case-Based Reasoning 35

e is a 3-tuple e = (Q, ai, n). Here, Q denotes the actual value of e and thus
the value of taking the corresponding, not explicitly known action vector in
state s (the sorting is done w.r.t. Q), ai is the elementary action taken by
agent i and n stands for the number of times the estimated value Q of this
experience has already been updated.

If it can be assured, that at every point of time each agent choosing
an action uses the same index x to access its experience list, i.e. selecting
e := Ei(s)[x], and moreover, selects the action e.ai given by that experi-
ence, then the reward signal generated by the environment can be related
correctly to the (implicitly) referenced joint action vector. Accordingly, the
corresponding Q value e.Q = Ei(s)[x].Q may be updated appropriately.

Index Selection Harmonisation: The procedure to select index x within an
experience list Ei(s) must be implemented in exactly the same manner in
every agent. It has to guarantee that at each instant of time each agent
selects the same index, which implies that all agents must be aware of the
same time.

Efficient Exploration: Due to the sorting of all experience lists, the best ac-
tions are to be found at their beginnings. Therefore, an index selection mech-
anism that aims at greedily exploiting the knowledge contained in its lists,
would always select the first index. However, to trade off exploration and
exploitation it is suitable to select the top entries more frequently, but also
to choose the last entries with a non-zero probability. The implementation
of a corresponding procedure is straightforward.

For further details of the algorithm as well as for a proof of its theoretical
convergence properties we refer to [9]. An obvious limitation of this algorithm
is its usability for discrete state-action spaces, only. However, the application of
generalisation techniques, to deal with large state/action spaces, is of great im-
portance, in particular in multi-agent domains where the size of the joint action
spaces can grow exponentially with the number of agents [4]. Therefore, taking
the learning algorithm sketched so far as a starting point, in the next section
we will present an extended, case-based version of it that may be employed for
larger-scale problems.

2.3 Related Work

Different authors have investigated the use of case-based technology in RL-
related and multi-agent settings. Powell et. al [17] introduce automatic case
elicitation (ACE), a learning technique where the CBR system initially starts
without domain knowledge and incrementally gains competence through real-
time exploration and interaction within the environment. Their system is suc-
cessfully applied in the domain of checkers. Macedo [13] focuses in depth on the
issue of efficient CBR-based exploration of an autonomous agent in an eventually
non-stationary environment an evaluates his approach in the context of robot-
ics. The aspect of agent-cooperation is highlighted, for example, in the work of
Ontanon and Plaza on ensemble CBR [14]. The focus there is on case reten-
tion of collaborative agents trying to solve some analytical classification task

36 T. Gabel and M. Riedmiller

while having different degrees of competence. In a later work, Plaza spots the
issue of distributed case-based reuse, assuming cooperation of multiple agents in
problem-solving and tackling configuration tasks [15]. There has also been much
work into the direction of multi-case-based reasoning (MCBR [10]), where case
bases contain knowledge collected in different contexts and for different tasks or
where each case base may specialise on certain regions of the problem space.

A comprehensive article reviewing and comparing a number of memory-based
approaches to value function approximation in reinforcement learning is the one
by Santamaria and Sutton [20]. With our case-based Q function representation
we are in line with these authors as well as with the work of Bridge [3], since we
will consider the actions as a part of the cases’ solutions.

Multi-agent learning has been an important topic in the RL literature for
years. Foundational issues and algorithms as well as a number of approaches to
extend the Q learning algorithm into the area of multi-agent domains can be
found, e.g., in [7,11,23]. While most of these works focus on discrete problems
with finite state spaces, there have also been attempts to tackle larger multi-
agent problem domains in conjunction with function approximation. Focusing
not on cooperative MA learning, but on adversarial settings with one agent and
one opponent, Uther [25] uses a piecewise linear function approximator similar to
decision trees in an abstracted soccer game. For the domain of Robotic Soccer
Simulation we have learnt a number of strategic behaviors in which multiple
agents are involved using neural networks for value function representation [18].
Bowling and Veloso [2] use the CMAC for function approximation in adversarial
multi-robot learning in conjunction with policy gradient RL. Cooperative multi-
agent learning of independent learners (as we do) and the aspect of inter-agent
communication is investigated in the work of Szer and Charpillet [22] where,
however, mutual communication between the agents is allowed.

In the evaluation part of this paper we will focus on the application field of
reactive production scheduling. For a deeper understanding of that domain we
refer to [16] and to our own previous work in that area [19,6] using RL with neural
net-based function approximation. Moreover, there have been also attempts to
solve scheduling problems with case-based methods (e.g. [8,24,12]).

3 A CBR Approach to Multi-agent Reinforcement
Learning

The CBR paradigm tells that similar problems have similar solutions. We may
transfer that statement to a terminology that is more closely related to rein-
forcement learning tasks and say it is likely that in similar situations similar
or identical actions are of similar utility. Based on that assumption, case-based
techniques have been employed at times to generalise and approximate value
functions for RL problems in large/continuous state-action spaces. The same
principle also holds when multiple agents are involved: In similar situations a
collective of agents will obtain similar rewards when taking similar joint actions.

Multi-agent Case-Based Reasoning 37

3.1 Distributed Case-Based Value Function Approximation

For large and/or continuous state spaces S it is impossible to store the expected
value of all state-action pairs explicitly (e.g., in a Q table). So, we suggest to
utilize the capability to generalise that can be achieved via CBR: We intend to
cover S by a finite number of cases, where the expected values (Q values) of
different actions are stored in a special form in the cases’ solution parts.

Each agent manages its own case base to cover the state space. When a
new state is entered, the best-matching representative (nearest neighbour) from
the case base is retrieved and the action which promises to yield the highest
reward is selected for execution. For single-agent scenarios the implementation
of appropriate algorithms seems intuitive, but when multiple agents are involved
in decision-making, a number of substantial problem arise:

– Since we consider independent learners that have no idea of the actions taken
by their colleagues, we must find a way to enable each agent to differenti-
ate between different joint action vectors in the light of case-based Q value
function approximation.

– Efficient and effective exploration of the joint action space are indispensable
to learn good policy behaviours. Accordingly, some synchronisation mecha-
nism is required.

– Lack of adequate (state) information in some agents might imply that learn-
ing proceeds differently than in other agents. Consequently, retrieval and
reuse of experience could not be made in a harmonised way.

The issues raised above manifest necessary conditions for a distributed case-
based value function approximation to work successfully. Regarding the last
problem we emphasise that we always assume all agents to have the same in-
formation on the current global state. We stress that the state information may
very well be incomplete, i.e. the environment may be partially observable only
(as in our experiments in Section 5), which adds further difficulty to the learn-
ing problem. However, then for each agent the same parts of the global state
are hidden. As a consequence of the identical global view each agent has and
assuming identical case-base management and retrieval algorithms to be used
by all agents, it can easily be guaranteed that all agents have case bases with
identical contents and that retrieval produces the same results across all agents.

3.2 Case Representation and Retrieval

Pursuing the traditional way to model the case representation, we consider cases
that are made up of a problem and a solution part, in the following. Note, that
each agent present in our multi-agent settings has its own case base and has no
access to any other agent’s case base and that no inter-agent communication is
allowed. The overall case structure is sketched in Figure 1.

3.2.1 The Problem Part
The cases problem parts are meant to represent the instances s of the state
space S. Our algorithms do not pose any requirements on the modelling of the

38 T. Gabel and M. Riedmiller

C
as

e
c

=
 (

c.
p,

c.
so

l)
P

ro
b

le
m

S
o

lu
ti

o
nState

Characterisation
e.g. Features to Describe
the State of All Agents
(Global View)
e.g.
Attribute Value-Based

s = (feature1,
…, featuref)

• Sorted Experience List for Case c

• Evaluation of Solution Quality v∈R

0

1

lm

ai n Q

… … …

Case Base
for Agent i

ai = Elementary
Action of Agent i

n = Number of
Updates

Q = Estimated Value

Fig. 1. Case Representation

case problem parts as long as adequate similarity measures can be defined, which
reflect similarities between states. So, we assume the existence of some similarity
measure sim : S × S → [0, 1] that assesses the degree of similarity between two
states. Consequently, given a case base CB, the nearest neighbour ν ∈ CB
of any query q ∈ S can be determined easily, and1 it holds NN(q) := ν.p =
argmaxc∈CB sim(c.p, q). In Figure 1 the cases’ problem parts are exemplarily
realised by a number of features (attribute-value based representation).

3.2.2 The Solution Part
For the cases’ solution parts we need to define some specific data structures that
are aligned with the distributed learning algorithm sketched in Section 2.2. A
solution c.sol of a case c consists of two parts, c.sol = (E, v). Whereas v ∈ R

represents an evaluation value of the solution quality, E is a list into which the
experience is compressed the agent has made within its environment. Specifically,
E = (E[1], . . . , E[lm]) contains exactly lm entries (with m the number of agents
and l the number of elementary actions selectable by each agent2). Hence, an
experience list reserves one entry to implicitly reference each possible joint action
vector. Each list entry e = E[x] of E can be accessed by its index x (for ease
of notation we will also allow the shortcut e = c.sol[x] instead of c.sol.E[x])
and is a 3-tuple, e = (ai, n, Q) as indicated in Section 2.2. The key point of
this representation is that, no matter which case is considered and no matter
which list entry of the case’s solution is regarded, the agent only knows its
own elementary action ai. Despite that, it is enabled to implicitly differentiate
between all lm joint action vectors by means of the mechanism that shall be
explained subsequently.

4 Multi-agent CBR for Independent Learners

In this section we present our case-based multi-agent RL algorithm in a threefold
way. First, in Figure 2 we provide a coarse overview over its components involved.
Second, Algorithm 1 gives a possible realisation of its main functionality in
1 We use the notation c.p and c.sol to access the problem and solution part of case c,

respectively.
2 We assume the number of elementary actions to be finite or, in the case of continuous

actions, that an appropriate action discretisation has been introduced.

Multi-agent Case-Based Reasoning 39

pseudo-code. And finally, the text describes all elements and their interplay in a
much more detailed way.

Since our focus is on multi-agent learning, in the following we must clearly dis-
tinguish between the agents’ learning and application phases. During the former,
the agents interact with their environment, collect experience and extend and
refine the contents of their case bases. During the latter (the reuse or application
phase), the results of learning are exploited, which means that for each state the
best action possible is considered by all agents and collectively executed.

Many practical problems are of episodic nature, characterised by some set G
of goal states (an episode ends, when an s ∈ G has been reached). In order to not
complicate Algorithm 1 it has been given in a non-episodic realisation, though
it may easily be adapted to handle episodic tasks.

4.1 Solution Index Addressing and Exploration

Each time an agent is provided with a new observation, i.e. a new state s, it
takes this state as query and searches its case base for the nearest neighbour
ν. Most of our considerations to be made in the rest of this and the following
sections will refer to the appending solution ν.sol.

For the moment we ignore the question if the agent ought to add a new case
for state s to the case base (cf. Section 4.3). The method selectIndex(i,t)
(step 3 in Figure 2 and 2b-iii in Algorithm 1), as already indicated in Section
2.2, selects an index x to access the solution’s experience list ν.sol and must be
implemented in such a way that it returns the same list index in each agent.
For this to happen each agent needs the same implementation and moreover, if
random accessing is required, for instance, identical random number generator
seedings in each agent. Let xi := selectIndex(i,t)with t as current time, then
the agent will choose ν.sol[xi].a as its next elementary action3.

Using a clever implementation of selectIndex, this way an efficient explo-
ration mechanism can be realised. For example, ε-greedy exploration can be
implemented by returning index 1 with probability 1 − ε (greedy action choice)
and a random index from [1, . . . , lm] with probability ε.

After all agents have decided for their elementary action the composite action
vector is executed and the successor state s′ and reward r are observed by all
agents (steps 2c and 2d in Algorithm 1 and steps 5 and 6 in Figure 2).

4.2 Distributed Q Learning Updates

Standard Q learning, as briefly introduced in Section 2.1, converges for MDPs
with finite state and action spaces to the expected true rewards, when the learn-
ing rate αi = αn(s,a) in the update rule (Equation 1) is sensitive to the number
of updates n(s, a) that have already been made to the state-action pair (s, a)
and it holds:

3 Note, that xi = xj for all i, j ∈ {1, . . . , lm}, but in general it holds ai �= aj for many
i, j ∈ {1, . . . , lm}.

40 T. Gabel and M. Riedmiller

retrieve
nearest
neighbour

Process Transition
s s‘

• determine greedy Q value
of successor NN(s‘).sol[0].Q

• determine learning rate
• make update of Q value
• make update of n value

Joint Action

a n Q

… … …

NN(s‘).sol

… …

a, r
Solution

Index Selection
Mechanism

a n Q

NN(s).sol

Agent i

State s

Subsequent State s‘

E
nv

iro
nm

en
t

State
Transition

Reward rReward
Generation

1

select
entry

3

Chosen Elementary Action ai
4

5

6a

6b

Case Base
for Agent i

2

7

8

9

10resort

Fig. 2. Procedural View on CBR-Based Multi-Agent Reinforcement Learning

a) the sequence (αi)∞i=1 fulfills αi ∈ [0, 1],
∑∞

i=1 αi = ∞,
∑∞

i=1 α2
i < ∞, and

b) each state-action pair is visited an infinite number of times.

Although our implementation of the procedure getLearningRate (cf. Algorithm
1, step 2e-ii) fulfills the first requirement, convergence to the theoretical optimum
could even under fulfillment of b) not be expected, since we do use a case-based
function approximator (with a finite number of instances in memory) to cover
the state space. Nevertheless, good policies can be learnt even in presence of this
kind of generalisation (cf. our empirical result in Section 5).

For an independent learner with a case-based and experience list-based rep-
resentation of its Q function, the update rule, originally provided in Section 2.1,
can now be rewritten with respect to the data structures and case representation
we have introduced. Let T = (s, ai, s

′, r) be a transition perceived by agent i con-
sisting of state s, (elementary) action ai of agent i (where ai corresponds to the
previously selected index xi, i.e. ν.sol[xi] = ai), the successor state and the re-
ward, let ν and ν′ denote the nearest neighbours of s and s′ with respect to CBi,
respectively, and let αi denote the learning rate calculated by getLearningRate
(e.g. αi := 1

1+ν.sol[xi].n
), then the agent performs the following updates:

ν.sol[xi].Q := (1 − αi) · ν.sol[xi].Q + αi(r + γ · ν′.sol[1].Q)
ν.sol[xi].n := ν.sol[xi].n + 1 (2)

After having performed this kind of update, the experience list in ν.sol is resorted
with respect to increasing Q values (see steps 9 and 10 in Figure 2). It is easy to
prove by induction that at each instant of time the contents of all agents’ case
bases and hence, their Q functions, are identical. Due to limited space we omit
the proof here.

4.3 Case Base Management

Of course, when the case base is empty the agent has to insert a new, blank
case for the state s provided. Otherwise, predicate addCaseCriterion(s) must

Multi-agent Case-Based Reasoning 41

1. let t be the global time, m be the number of agents, l the number of elementary
actions, CBi = ∅ an empty case base for each agent, γ the discount factor,
and set s = s′ ∈ S to the initial state of the system

2. repeat
(a) set s := s′

(b) for all agents i ∈ {1, . . . , m} do
i. if CBi = ∅ or addCaseCriterion(s) is true

then CB := CB ∪ c
with c.p = s and c.sol = emptySolution(i)

ii. retrieve nearest neighbour νi := arg maxc∈CBi
sim(s, c.p) of state s

iii. set index xi := selectIndex(i,t)
iv. select elementary action ai := νi.sol[xi].ai

(c) apply joint action a = (a1, . . . , am)
(d) observe successor state s′ ∈ S and reward r ∈ R

(e) for all agents i ∈ {1, . . . , m} do
i. retrieve nearest neighbour ν′

i := arg maxc∈CBi
sim(s, c.p) of state s′

ii. set learn rate αi := getLearningRate(νi .sol[xi].n)
iii. set νi.sol[xi].Q := (1 − αi)νi.sol[xi].Q + αi(r + γν′

i.sol[1].Q)
iv. increment νi.sol[xi].n by one
v. resort the experience list in νi.sol

until stopCriterion() becomes true

Algorithm 1. Case-Based Multi-Agent Reinforcement Learning in a Non-Episodic
Realisation

make the decision whether to add a new case for s. Here, it must be deliberated
whether the experience already contained in CB can be considered reusable for
the current situation. In particular, the similarity between s and the problem part
of its nearest neighbour in the case base may be a meaningful indicator, provided
that appropriate, knowledge-intensive similarity measures have been defined for
the task at hand. In our current implementation, addCaseCriterion(s) returns
true, if the case base size limit has not been exceeded and the similarity between
s and its nearest neighbour in CB is less than some threshold ς. Note, that the
addition of a new case incurs some necessary follow-up operations:

– Let Cnew be a case added at time tnew. Assume that the transition (s, a, snew,
r) has to be processed at t = tnew +δ (with some small δ) where c := NN(s)
has been added at time ts < tnew . Then, the update according to Equation
2 should take into account that the solution of the nearest neighbour case of
snew is most likely rather “uninformed”. Therefore, we omit making updates
when NN(snew).sol[1].n = 0, i.e. when no update for the greedy action in
the case responsible for snew has been made, yet. This clearly reduces the
speed of learning as long as new cases are added repeatedly.

– After having added a new case cnew, the solution parts of all cases in C :=
{c ∈ C|cnew = NN(c)} have to be reinitialised: Let Scnew := {s ∈ S|cnew =
arg maxc∈CB sim(c.p, s)} ⊂ S be the subset of the state space, for queries

42 T. Gabel and M. Riedmiller

from which cnew is the nearest neighbour in CB. Then, before cnew was
added to CB, the nearest neighbours of all s ∈ Scnew were elements of C.
Hence, the solution parts of all c ∈ C are no more valid and must be reset.

When resetting as well as initialising a case’s solution c.sol, i.e. when creating
empty solutions (procedure emptySolution in Algorithm 1), of course all Q value
entries and entries telling the number of updates are set to zero: c.sol[x].Q =
c.sol[x].n = 0 for all x ∈ {1, . . . , lm} in all agents. The field for the elementary
action c.sol[x].a, however, must be set with some care: The implementation
of emptySolution(i) must guarantee that – when combining the elementary
actions of all agents i over all list entries – there is exactly one entry for each
possible joint action, which can be easily achieved by a careful design of the
corresponding programming. Given this kind of initialisation and the solution
index selection mechanism described, the preconditions for the proof shown in
Section 4.2 are satisfied.

Case Base Quality Evaluation: After each learning update step the changed
solution c.sol is evaluated with respect to its usability for new problems and the
corresponding evaluation is stored in c.sol.v. A possible indicator of its quality
may be the sum

∑lm

j=1 c.sol[j].n of Q learning updates that have already been
made for this solution. Currently, however, we employ a simpler, boolean solution
evaluation: We consider a solution of a case valid and usable if and only if each
of the entries in the belonging experience list has been updated at least once.
In other words, each joint action vector possible must have been tried once for
each c ∈ CB, until the corresponding case solution is unlocked for use.

5 Experimental Evaluation

To evaluate our case-based and experience list-based approach to multi-agent
reinforcement learning we chose the application domain of reactive production
scheduling. The learners’ task is to autonomously find a cooperative dispatching
policy to assign jobs to a limited number of resources, where each job consists
of a number of operations that must be performed on specific resources in a
pre-defined order. Most classical approaches to solve scheduling problems per-
form search in the space of possible schedules (e.g. tabu search [16], but also
GA-based solutions [12]). By contrast, we take an alternative, reactive approach
to job-shop scheduling: We model the environment (the plant) as an MDP and
have a learning agent at each resource that decides which job to process next
based on its current view on the entire plant (see [19] for more details). A fun-
damental advantage of this reactive approach is that the agents will also be able
to react quickly and appropriately in new, unforeseen situations (e.g. in case of
a machine breakdown), whereas most classical scheduling algorithms will have
to discard their calculated schedule and start recomputing it. Since, job-shop
scheduling problems are well-known to be NP-hard, this can become a time-
critical problem.

Multi-agent Case-Based Reasoning 43

5.1 Experiment Setup

In our modelling of the scheduling environment a state s must describe the
situation of all resources at that point of time – so, s characterises the sets of
waiting jobs at all resources. In our current implementation we use an attribute-
value based state representation where the state description is made up of 4m
features, i.e. the sets of waiting jobs at each resource are characterised by four
properties. This way, of course, not all of the properties of the currently waiting
jobs can be captured, why the environment is perceived as partially observable
by each agent. To calculate the similarity between two states we have made use
of the local-global principle, defined appropriate local similarity measures for
the features and amalgamated them to the global similarity sim(s1, s2) using
suitable feature weights.

The overall goal of learning is to minimise production costs. Costs arise each
time a job is tardy, that means when it has not been finished until its due date.
So, the overall learning goal is to minimise summed tardiness over all jobs in the
system,

∑
t

∑
j jobTardy(t, j). Accordingly, each time one or more tardy jobs

are in the system, a negative reward is incurred; if there are no jobs that have
violated their due date, the immediate reward is zero.

The actions our agents are allowed to take are decisions to act according to
one out of l rather simple, established dispatching priority rules (DPR). A DPR
chooses a job j out of a set of waiting jobs J subject to some specific criterion.
There is a variety, of more or less complex DPRs: For example, the EDD rule
chooses the job j ∈ J which has the earliest due date. The MS rule picks the
job with minimal processing slack and the SPT rule, for instance, chooses a
job whose next operation has the shortest processing time. In the scope of our
evaluation we will focus on the mentioned three DPRs, i.e. the set of available
elementary actions for each agent is A = {aEDD, aMS , aSPT }. Furthermore, in
all our experiments we consider two cooperative scheduling resources/agents that
work according to the algorithms discussed in the previous sections.

5.2 Results

Each experiment is divided into a training and a testing phase: A random set Sa

of training scheduling scenarios and an independent set Sb of testing scenarios
are generated (all of them differing in the properties and numbers of jobs to be
processed, |Sa|=10, |Sb|=50). During training, the scenarios in Sa are processed
repeatedly4 where the agent picks random actions with p = 0.5 (explores) and
that way gathers experience. During testing, the scenarios in Sb are processed
once, where now all agents behave greedily w.r.t. their current Q functions,
stored distributedly in their case bases. The performance is measured in terms
of the average summed tardiness on the scheduling scenarios from Sa/b.

Comparison to DPR-based Agents: We compared the final scheduling capabilities
of our learning agents to nine different agent-constellations in which both agents

4 We call the processing of one scenario an episode.

44 T. Gabel and M. Riedmiller

EDD+EDD

EDD+MS

EDD+SPT

MS+EDD

MS+MS

MS+SPT

SPT+EDD

SPT+MS

SPT+SPT

CBRELB

System
(Res1+Res2)

Tardiness
Training

Tardiness
Testing

Rank

62.2

72.4

121.7

70.1

85.2

121.2

149.6

158.4

205.7

59.7

70.40

75.42

138.28

74.52

79.30

139.18

132.28

133.82

225.96

69.88

2

4

8

3

5

7

6

9

10

1

59.7

62.2

70.470.1

72.4

69.88

74.52 75.42

79.3

85.2

55

60

65

70

75

80

85

Training Scenarios in Set Sa Test Scenarios in Set Sb
A

ve
ra

g
e

S
u

m
m

ed
 T

ar
d

in
es

s

CBRELB EDD+EDD
MS+EDD EDD+MS
MS+MS

Fig. 3. Performance of the CBR-based Scheduler vs. the Top 4 Heuristic Ones

worked according to some fixed DPR. To be exact, we evaluated each combina-
tion of each agent working with one of the rules from {EDD, MS, SPT } (see
Figure 3). Obviously, the setting when the first as well as the second agent worked
with the EDD rule, was the best-performing one (on set Sa as well as on Sb).
When both agents were learning, however, the resulting scheduling quality could
be increased (data row CBRELB in Figure 3). The resulting scheduling system
(using a case base of 500 instances) outperformed the best of all DPR-based
systems by 4.2% on the training scenarios (average tardiness of 59.7 instead of
62.2). Even on the independent test set, i.e. on 50 entirely different scheduling
scenarios the best combination of heuristically acting agents is beaten (average
tardiness of 69.88 instead of 70.4). So, one may conclude that the learning agents
have discovered and learnt regions of the problem space in which certain joint
actions are of extremely high usefulness. We allowed the CBRELB agents to
learn for 20000 episodes to reach those results.

Case Solution Utilisation: Working within an 8-dimensional problem space, it
may happen that for some (query) state q the similarity σ to its nearest neighbour
in CB is rather low. Therefore, we allowed each agent to use a fallback action
in case that no well-matching case in CB could be found. To be exact, during
evaluation an agent used the EDD rule as fallback action in situations when
σ < 0.8 or when the nearest neighbour’s solution part had an evaluation value
v that marked this solution as not usable (cf. Section 4.3). Of course, the more
comprehensive the case base and the longer the learning process has been going
on, the less often these situations occur. It is clear that the amount of stored
experience must not be too sparse. When experimenting with case bases of sizes
100 and 200 only, the CBRELB -setting still outperformed EDD + EDD on the
training instances (tardiness of 60.1 and 60.6, respectively), but on the test set
an average tardiness of 75.68 and 70.36, respectively, could be achieved only.

6 Conclusions

We have developed and evaluated a CBR-approach that allows for the distrib-
uted learning of behaviour policies of independent reinforcement learners. To

Multi-agent Case-Based Reasoning 45

tackle the complexity and high-dimensionality inherent in multi-agent settings
we employed case-based reasoning as the core technology to facilitate gener-
alisation. Moreover, we combined CBR with a mechanism to achieve implicit
coordination of the agents involved which is a necessary prerequisite to make
a correct processing of rewards obtained from the environment possible. Our
results of a series of experiments in the application domain of reactive job-shop
scheduling are very promising, since our approach was able to outperform all
schedules generated by a larger number of scheduling systems that worked with
fixed dispatching priority rules.

Our research has raised a number of interesting issues to be investigated in
on-going and future work. In a next step, we want to evaluate our approach
in even larger application scenarios, involving more cooperative learning agents
and a larger number of elementary actions. Another interesting issue concerns
efficient and effective routines for case base management, case addition and case
relocalisation, which need to be developed and further-developed, respectively.
Finally, we also seek to design an offline variant of the Q learning update em-
ployed which makes more efficient use of gathered experience and, hence, is likely
to bring about faster and presumably better learning results.

Acknowledgements. This research has been supported by the German Re-
search Foundation (DFG) under grant number Ri 923/2-1.

References

1. D. Bertsekas and J. Tsitsiklis. Neuro Dynamic Programming. Athena Scientific,
Belmont, USA, 1996.

2. M. Bowling and M. Veloso. Simultaneous Adversarial Multi-Robot Learning. In
Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-03), pages 699–704, Acapulco, Mexico, 2003. Morgan Kaufmann.

3. D. Bridge. The Virtue of Reward: Performance, Reinforcement and Discovery
in Case-Based Reasoning. In Proceedings of the 6th International Conference on
Case-Based Reasoning (ICCBR 2005), page 1, Chicago, USA, 2005. Springer.

4. C. Claus and C. Boutilier. The Dynamics of Reinforcement Learning in Coopera-
tive Multiagent Systems. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), Menlo Park, USA, 1998. AAAI Press.

5. T. Gabel and M. Riedmiller. CBR for State Value Function Approximation in Re-
inforcement Learning. In Proceedings of the 6th International Conference on Case-
Based Reasoning (ICCBR 2005), pages 206–221, Chicago, USA, 2005. Springer.

6. T. Gabel and M. Riedmiller. Reducing Policy Degradation in Neuro-Dynamic
Programming. In Proceedings of ESANN2006, Bruges, Belgium, 2006. To appear.

7. J. Hu and M. Wellman. Nash Q-Learning for General-Sum Stochastic Games.
Journal of Machine Learning Research, 4:1039–1069, 2003.

8. J. Kim, D. Seong, S. Jung, and J. Park. Integrated CBR Framework for Quality
Designing and Scheduling in Steel Industry. In Proceedings of the 7th European
Conference on CBR (ECCBR 2004), pages 645–658, Madrid, Spain, 2005. Springer.

9. M. Lauer and M. Riedmiller. Reinforcement Learning for Stochastic Cooperative
Multi-Agent Systems. In Proceedings of AAMAS 2004, pages 1514–1515, New
York, NY, July 2004. ACM Press.

46 T. Gabel and M. Riedmiller

10. D. Leake and R. Sooriamurthi. Managing Multiple Case Bases: Dimensions and
Issues. In FLAIRS Conference, pages 106–110, Pensacola Beach, 2002. AAAI Press.

11. M. Littman. Friend-or-Foe Q-learning in General-Sum Games. In Proceedings of
the Eighteenth International Conference on Machine Learning (ICML 2001), pages
322–328, Williamstown, USA, 2001. Morgan Kaufman.

12. S. Louis and J. McDonnell. Learning with Case-Injected Genetic Algorithms. IEEE
Trans. Evolutionary Computation, 8(4):316–328, 2004.

13. L. Macedo and A. Cardoso. Using CBR in the Exploration of Unknown Environ-
ments with an Autonomous Agent. In Proceedings of the 7th European Conference
on CBR (ECCBR 2004), pages 272–286, Madrid, Spain, 2005. Springer.

14. S. Ontanon and E. Plaza. Collaborative Case Retention Strategies for CBR Agents.
In Proceedings of the 5th International Conference on Case-Based Reasoning (IC-
CBR 2003), pages 392–406, Trondheim, Norway, 2003. Springer.

15. S. Ontanon and E. Plaza. Cooperative Reuse for Compositional Cases in Multi-
agent Systems. In Proceedings of the 6th International Conference on Case-Based
Reasoning (ICCBR 2005), pages 382–396, Chicago, USA, 2005. Springer.

16. M. Pinedo. Scheduling. Theory, Algorithms, and Systems. Prentice Hall, 2002.
17. J. Powell, B. Hauff, and J. Hastings. Evaluating the Effectiveness of Exploration

and Accumulated Experience in Automatic Case Elicitation. In Proceedings of
ICCBR 2005, pages 397–407, Chicago, USA, 2005. Springer.

18. M. Riedmiller and A. Merke. Using Machine Learning Techniques in Complex
Multi-Agent Domains. In I. Stamatescu, W. Menzel, M. Richter, and U. Ratsch,
editors, Adaptivity and Learning. Springer, 2003.

19. S. Riedmiller and M. Riedmiller. A Neural Reinforcement Learning Approach
to Learn Local Dispatching Policies in Production Scheduling. In Proceedings of
ICJAI’99, pages 764–771, Stockholm, Sweden, 1999.

20. J. Santamaria, R. Sutton, and A. Ram. Experiments with RL in Problems with
Continuous State and Action Spaces. Adaptive Behavior, 6(2):163–217, 1998.

21. R. S. Sutton and A. G. Barto. Reinforcement Learning. An Introduction. MIT
Press/A Bradford Book, Cambridge, USA, 1998.

22. D. Szer and F. Charpillet. Coordination through Mutual Notification in Cooper-
ative Multiagent Reinforcement Learning. In Proceedings of AAMAS 2004, pages
1254–1255, New York, USA, 2004. IEEE Computer Society.

23. G. Tesauro. Extending Q-Learning to General Adaptive Multi-Agent Systems. In
Proceedings of NIPS 2003, Vancouver and Whistler, Canada, 2003. MIT Press.

24. P. Tinkler, J. Fox, C. Green, D. Rome, K. Casey, and C. Furmanski. Analogical and
Case-Based Reasoning for Predicting Satellite Task Schedulability. In Proceedings
of ICCBR 2005, pages 566–578, Chicago, USA, 2005. Springer.

25. W. Uther and M. Veloso. Adversarial Reinforcement Learning. Technical Report
CMU-CS-03-107, School of Computer Science, Carnegie Mellon University, 2003.

26. C. Watkins and P. Dayan. Q-Learning. Machine Learning, 8:279–292, 1992.

	Introduction
	Distributed Reinforcement Learning
	From One to m Agents
	Core Ideas of a Learning Algorithm for Independent Learners
	Related Work

	A CBR Approach to Multi-agent Reinforcement Learning
	Distributed Case-Based Value Function Approximation
	Case Representation and Retrieval

	Multi-agent CBR for Independent Learners
	Solution Index Addressing and Exploration
	Distributed Q Learning Updates
	Case Base Management

	Experimental Evaluation
	Experiment Setup
	Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

