
Joint Equilibrium Policy Search

for Multi-Agent Scheduling Problems

Thomas Gabel and Martin Riedmiller

Neuroinformatics Group
Department of Mathematics and Computer Science

Institute of Cognitive Science
University of Osnabrück, 49069 Osnabrück, Germany

{thomas.gabel,martin.riedmiller}@uni-osnabrueck.de

Abstract. We propose joint equilibrium policy search as a multi-agent
learning algorithm for decentralized Markov decision processes with
changing action sets. In its basic form, it relies on stochastic agent-
specific policies parameterized by probability distributions defined for
every state as well as on a heuristic that tells whether a joint equi-
librium could be obtained. We also suggest an extended version where
each agent employs a global policy parameterization which renders the
approach applicable to larger-scale problems. Joint-equilibrium policy
search is well suited for production planning, traffic control, and other
application problems. In support of this, we apply our algorithms to
a number of challenging scheduling benchmark problems, finding that
solutions of very high quality can be obtained.

1 Introduction

Establishing inter-agent coordination in multi-agent systems depicts a challeng-
ing task. Agents that are disallowed to exchange coordinative messages must
both determine where equilibria are located in the joint state-action space and
also find out which equilibria are strived for by other agents. In this paper, we
consider teams of cooperative agents that all seek to optimize a global reward.
We assume that there exists at least one sequence of joint actions that leads the
collective to a joint equilibrium, i.e. to a final state reaching which means to
collect maximal summed rewards for all agents. Our goal is to enable the agents
to learn to reach a joint equilibrium with increasing frequency by allowing them
to adjust their probabilities of executing actions appropriately.

On the one hand, we build upon the framework of decentralized Markov deci-
sion processes with changing action sets that we recently [7] proposed as a mean
to model a subclass of general multi-agent problems that features provably lower
complexity than solving general DEC-MDPs does. A key property of this class is
that each action can be executed only once by each agent. On the other hand, we
borrow from an equilibrium selection algorithm for single-stage games by Fulda
[5] and extend it (a) towards scenarios with multiple states at which actions can
be executed and (b) towards a compact and efficient representation of the agents’

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 61–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

62 T. Gabel and M. Riedmiller

policies. In so doing, we obtain substantial savings in terms of computation time
and memory requirements.

Although our learning approach is applicable to various practical problems,
such as network routing or railway traffic control, the paper at hand specifi-
cally targets an application from the realm of production planning: We focus
on job-shop scheduling problems (JSSP) that can easily be posed as multi-agent
problems and represent and interesting testbed for distributed learning algo-
rithms. Problems of this type are well-known for their intricacy (NP-hardness)
and, what makes them appealing for use as a testbed, there exist various estab-
lished benchmark problem suites using which we can compare our algorithms to
other approaches.

The remainder of this paper is structured as follows. In the next section, we
describe the general problem setting, clarify necessary notation, and introduce
joint equilibrium policy search as a distributed learning algorithm for indepen-
dent agents with common interests. In Section 3 we propose and theoretically
investigate a substantial extension of that algorithm towards the use of a global,
instead of local (state-specific) policy parameterization which renders the ap-
proach better scalable to larger problems. Section 4 presents the application
domain of job-shop scheduling, explains how scheduling problems can be cast
as multi-agent learning problems, and evaluates empirically the usability of the
algorithms proposed in this paper for several benchmark problems.

2 Joint Equilibrium Policy Search

Joint equilibrium policy search (JEPS) is a distributed purely policy-based al-
gorithm. Before presenting its details, we start off by providing some necessary
notation.

2.1 Basics

We embed the problem settings of our interest into the framework of decentral-
ized Markov decision processes (DEC-MDP) [2].

Definition 1 (Factored m-Agent DEC-MDP). A factored m-agent DEC-
MDP M is defined by a tuple

〈Ag, S, A, P, R, Ω, O〉
where Ag = {1, . . . , m} is a set of agents, S is the set of world states that can
be factored into m components S = S1 × · · · × Sm (Si belong to one of the
agents each, all local states are fully observable), A = A1 × ... × Am is the set
of joint actions to be performed by the agents (a = (a1, . . . , am) ∈ A denotes a
joint action that is made up of elementary actions ai taken by agent i), P is
the transition function with P (s′|s, a) denoting the probability that the system
arrives at state s′ upon executing a in s, R is a reward function with R(s, a, s′)
denoting the reward for executing a in s and transitioning to s′. Moreover, M
is jointly fully observable, i.e. the current state is entirely determined by the
amalgamation of all agents’ state observations.

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 63

We refer to the agent-specific components si ∈ Si and ai ∈ Ai as the local state
and action of agent i. Each agent has only its local view, i.e. gets no information
about other agents’ local states and actions. We assume that there are some
regularities that determine the way local actions exert influence on other agents’
states. First, we assume that the sets of local actions Ai change over time.

Definition 2 (DEC-MDP with Changing Action Sets). A factored m-
agent DEC-MDP is said to feature changing action sets if the local state of
agent i is fully described by the set of actions currently selectable by i (si = Ai)
and Ai is a subset of the set of all available local actions Ai = {αi1 . . . αik}, thus
Si = P(Ai).

Concerning state transition dependencies, one can distinguish between depen-
dent and independent local actions. While the former influence an agent’s local
state only, the latter may additionally influence the state transitions of other
agents. Our interest is in non-transition independent scenarios. In particular, we
assume that an agent’s local state can be affected by an arbitrary number of
other agents, but that an agent’s local action affects the local state of maximally
one other agent (see [7] for a formalization). Also, there are no circular state
transition influences which implies that each agent can execute each of its local
actions only once.

The influence exerted on another agent always yields an extension of that
agent’s action set: If the execution of local action α by agent i influences the
local state of agent j, and i takes local action α, and the execution of α has
been finished, then α is added to Aj(sj), while it is removed from Ai(si). Thus,
the multi-agent system is guaranteed to reach a final state sf ∈ S at which all
actions have been processed and it holds sf

i = ∅ for all i.

2.2 Learning Joint Policies

JEPS is a purely policy-search based algorithm (i.e. no value functions are em-
ployed), where all agents’ policies are stochastic and are dependent on state-
specific probability vectors denoting the probabilities with which each action is
executed.

Definition 3 (JEPS Policy with Local Parameterization). Let si ∈ P(Ai)
be the current state of agent i, where si = Ai(si) = {α1, . . . , α|si|} corresponds to
the set of actions agent i can currently execute. Let PL(si) = {p(α1|si), . . . , p(α|si||
si)} be a probability distribution over all actions from si, thus 0 ≤ p(αj |si) ≤ 1
and

∑
j p(αj |si) = 1. Then, for agent i’s policy of action πi : Si → Ai it holds

si �→ α where α is selected from si with probability p(α|si). Accordingly, the joint
policy is defined as π = 〈π1, . . . , πm〉.
We assume that all action probability vectors are randomly initialized and that
the set of agents repeatedly interacts with the DEC-MDP until the final state
sf has been reached (also called the processing of a single episode). Then, the
global reward r is distributed to all agents and the system is reset to a starting

64 T. Gabel and M. Riedmiller

state. JEPS borrows from [5] in that it employs a binary heuristic H(r) that is
capable of telling whether a joint equilibrium has been attained. If so, it returns
true, otherwise false. In the remainder of this paper, we utilize a rather simplistic
implementation of H that returns true only if the current global reward equals
or exceeds the maximal reward rmax obtained so far, i.e. H(r) = 1 ⇔ r ≥
rmax. This idea has been exploited in a different context already by the Rmax
algorithm [3] and by optimistic assumption Q learning [8].

After having finished a single episode and only if having found that H(r) = 1,
each agent starts updating its action probabilities for all states it has encountered
during that episode. Here, the probabilities of all actions that were executed (and
thus contributed to reaching the joint equilibrium) are increased, while the prob-
abilities for executing any of the actions despised is decreased (see Algorithm 1).
Note, that this update scheme preserves that

∑
j p(αj |si) = 1 for all si. While

the updates JEPS does to the action probabilities are calculated in a similar
manner as in [5], the crucial difference is that JEPS is capable of distinguishing
between multiple states si, and can thus handle more than single-stage games
as it stores a single action probability vector for each local state.

Algorithm 1. JEPS Policy Updates by Agent i Using Local Action Parameters

Input: learning rate γ ∈ (0, 1], state-action history of current episode
h = [si(0), ai(0), si(1), . . . , si(T − 1), ai(T − 1), sf]

where T = |Ai| denotes the episode’s length, global reward r ∈ R

1: if H(r) = 1 then
2: for t = 0 to t < T do
3: for all α ∈ si(t) do
4: if α = ai(t) then p(α|si(t))← p(α|si(t)) + γ(1− p(α|si(t)))
5: else p(α|si(t))← (1− γ)p(α|si(t))

2.3 Discussion

JEPS extends the mentioned learning approach for single-stage games in a pur-
posive manner to problems with multiple states. Consequently, the policy up-
date mechanism is guaranteed to converge1 to a joint equilibrium as long as the
heuristic H is correct in the sense that it tells a true joint equilibrium. This
follows immediately from the convergence proof for single-stage games, since
each of JEPS’ states together with its belonging action probability vector can
be regarded as an individual single-stage game considered by Fulda [5].

When intending to apply the version of JEPS presented to practical problems,
two considerable problems arise. First, with a growing number of actions |Ai|
available to the agents, the size of the state space grows exponentially, since
states correspond to sets of available actions and, hence, in the worst case it
holds |Si| = |P(Ai)| = 2|Ai|. Accordingly, storing action probability vectors
1 Here, convergence means that for all states si there is an α ∈ si such that p(α|si)→ 1

in the course of learning.

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 65

for all states (separately for each of the agents) quickly becomes intractable as
the problem size grows. Additionally, the large number of action probability
vectors also increases the learning time needed until convergence to a nearly
deterministic policy is achieved.

To tackle these problems, in the next section, we suggest a compact policy
representation in combination with an alternative policy update mechanism that
clearly reduces the computational complexity and memory requirements while
still allowing for convergence to a joint equilibrium.

3 JEPS with Global Action Parameterization

Knowing the properties of DEC-MDPs with changing action sets (Definition 2)
and given the problems mentioned in Section 2.3, a crucial observation is that
each agent actually just has to be capable of learning a total order in which it
executes all actions from Ai.

3.1 Learning Total Orders of Action Execution

The basic idea for a version of JEPS that employs global action parameters
(JEPSG) is that, for each of the agents, we attach a single, or global, parameter
to each action in Ai from which then its probability of execution is induced.

Definition 4 (JEPS with Global Action Parameterization). Let PG =
{pG(αk)|αk ∈ Ai} be a probability distribution over the set Ai of local actions
agent i can execute, and let si = Ai(si) = {α1, . . . , α|si|} ∈ P(Ai) be its current
state. Then, for agent i’s policy of action πi : Si → Ai it holds si �→ α where α
is selected with probability

p(α|si) =

{
pG(α)�

αk∈si
pG(αk) if α ∈ si

0 else
, (1)

and the joint policy π is the concatenation of local policies 〈π1, . . . , πm〉.

Using this kind of policy representation each agent must store only |Ai| para-
meters which represents an enormous saving in terms of memory requirements
compared to the JEPS version with local action probabilities.

Based on the policy representation with global parameters according to De-
finition 4, we suggest a learning algorithm that, for each agent, performs the
parameter updates directly on the global parameter vector PG. The distinguish-
ing property of Algorithm 2 is that all positive updates, i.e. updates for actions
taken when having reached a joint equilibrium (line 4), are performed relative
to a state-specific baseline κsi(t) that is defined as

κsi(t) :=
∑

αk∈si(t)

pG(αk). (2)

66 T. Gabel and M. Riedmiller

Algorithm 2. Policy Updates by JEPS Agent i Using Global Action Parameters

Input: learning rate γ ∈ (0, 1], state-action history of current episode
h = [si(0), ai(0), si(1), . . . , si(T − 1), ai(T − 1), sf]

where T = |Ai| denotes the episode’s horizon, global reward r ∈ R

1: if H(r) = 1 then
2: for t = 0 to t < T do
3: forall α ∈ si(t) do
4: if α = ai(t) then pG(α)← pG(α) + γ(

�
αk∈si(t)

pG(αk)− pG(α))

5: else pG(α)← (1− γ)pG(α)

By this, it is possible to relate the local situation of agent i, i.e. its current local
state, to the set of global action parameters, and it also ensured that PG stays
a proper probability distribution with

∑
αk∈si(t)

pG(αk) = 1.
For this algorithm, we can show that for every agent and each local state si

the probability of executing an action α ∈ si that does not support yielding a
joint equilibrium is declining if it exceeds some threshold.

Lemma 1. Let α ∈ si and pG(α) >
κsi

2 . If the execution of α in state si does not
yield a joint equilibrium, then ΔpG(α) < 0, where ΔpG represents the difference
of pG(α) after and prior to the call to Algorithm 2.

Proof. If the current episode did not reach an equilibrium, no updates are per-
formed. Consider the case when an equilibrium has been reached and focus on
the smallest value of t for which it holds α ∈ si(t) for an arbitrary α ∈ Ai. Let
t + v (v ≥ 1) be the stage at which α has finally been selected for execution.
Then, the value of pG(α) will have been decremented v times according to line 5
(denote the result of this calculation as p−G(α)) and been increased a single time
at si(t + v). Thus,

p′G(α) := pG(α) + ΔpG(α) = p−G(α) + γ(κsi(t+v) − p−G(α))

= (1 − γ)v+1pG(α) + γ
∑

αk∈si(t+v)

p−G(αk).

For the sum on the right-hand side there exist values vk ≥ 0 for all αk ∈ si(t+v)
such that p−G(αk) = (1− γ)vkpG(αk). Since we are looking for the circumstances
under which p′G(α) < pG(α), i.e. ΔpG(α) < 0, we finally arrive at

ΔpG(α) < 0 ⇔ pG(α) >
γ

∑
αk∈si(t+v)(1 − γ)vkpG(αk)

1 − (1 − γ)v+1
=: δ(γ).

The term δ(γ) attains its maximal value for v = 1 and vk = 0∀k. Then,
δ(γ) = 1−γ

2−γ

∑
αk∈si(t+v) pG(αk). Maximizing subject to γ (γ → 0), we obtain

δ = κsi(t+v)

2 . And because by definition κsi(t) > κsi(t+v) for all v ≥ 1, we finally
see that for pG(α) >

κsi(t)

2 it holds ΔpG(α) < 0. �

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 67

Lemma 1 shows that probability updates cannot enforce convergence to sub-
optimal action choices. Unfortunately, still there may be the case of two joint
equilibria with identical global reward between which the agent may oscillate.
However, we can show that for any state si there is a critical action probability
value such that upon exceeding that value one joint equilibrium starts dominat-
ing another one.

Lemma 2. If α ∈ si(t) is an action within a joint equilibrium episode, then
there exists a value p� such that, if pG(α) > p�, then pG(α) is more likely to
increase over time than to decrease.

Proof. The critical case of pG(α) decreasing can occur, if there is a β ∈ si(t)
such that still a joint equilibrium can be obtained when β is executed in si. If α
is executed, then pG(α) is increased (line 4), whereas pG(β) is decreased (line 5)
at least one time and later increased at a t + v > t when β is finally executed. If
β is selected in si, the situation is the other way round (pG(α) decreased v times
according to line 5, if it is selected v decision time points later). Consequently,
with a probability of pG(α)

κsi(t)
it holds

pα
G(α) := pG(α) + ΔpG(α) = pG(α) + γ(κsi(t) − pG(α))

and with a probability of pG(β)
κs(t)

it holds

pβ
G(α) := p−G(α) + γ(κsi(t+v) − p−G(α))

= (1 − γ)vpG(α) + γ(κsi(t+v) − (1 − γ)vpG(α)).
Since we look for the conditions under which ΔpG(α) = p′G(α) − pG(α) > 0, we
can express this inequation using a weighted average as

pG(α)pα
G(α)+pG(β)pβ

G(α)

κsi(t)(pG(α)+pG(α)) − pG(α) > 0.

After a number of algebraic reformulations, this simplifies to
κsi(t)

pG(β) + κsi(t+v)

pG(α) > 1+γ−(1−γv+1)
γ .

The right-hand side of this inequation attains its maximum for v → ∞ which be-
comes 1 + 1

γ . For the left-hand side, we know that κsi(t) ≥ pG(α) + pG(β) and
κsi(t+v) ≥ pG(α). Assuming the worst case (both equalities) here, too, we arrive at

pG(α)+pGβ
pG(β) + pG(α)

pG(α) > 1 + 1
γ and thus pG(α)

pG(β) > 1−γ
γ .

Consequently, if for a state si one joint equilibrium action α ∈ si dominates
all other actions by a share of at least p� := 1−γ

γ , then ΔpG(α) tends to be
positive. �
3.2 Discussion

If for some action α within an equilibrium episode the probability of execution
exceeds some critical value, then pG(α) tends to be increasing continually. Since
updates are not just made for single actions, but for all actions taken during an
equilibrial episode, this argument transfers to the remaining actions from Ai as
well. With continued positive updates all pG(αk) converge such that for each si

there is a α�
si

with
pG(α�

si
)

κsi
→ 1, which means that the policy the agent pursues

approaches a deterministic one.

68 T. Gabel and M. Riedmiller

Of course, the time required for convergence to occur may be high. Setting the
learning rate γ to a higher value, learning can be speeded up. However, this comes
at the cost of an increased probability, that learning converges prematurely to
a non-equilibrium, because the heuristic H we use is imperfect with respect to
the true joint equilibrium of the system. Insofar, adjusting γ represents a mean
to trade off learning speed and the goal of obtaining a joint policy very close to
a joint equilibrium.

Returning to the point of view of a total order of action execution that is rep-
resented by the vector of global action parameters PG, we observe that JEPSG

may drive the parameters pG(α) and pG(β) for some actions α and β (in particu-
lar for actions whose execution is repeatedly postponed) to very small numerical
values – while at the same time it may be required that the share of pG(α) and
pG(β) must be either very large or small. As a consequence, a limiting factor
when implementing and using Algorithm 2 is given by the smallest real-valued
number that can be represented on the respective hardware2. Accordingly, the
convergence behavior of a practical implementation of JEPSG will be as follows:

a) Convergence to a joint equilibrium policy, as indicated by heuristic H in
conjunction with rmax, occurring with a probability of nearly one may occur.
This means, after λ learning episodes it holds for all agents i, for all states
si, and for all α ∈ si that pG(α)

κsi
> 1 − ε for some small ε > 0.

b) Numerical underflow problems arise3, i.e. that there is an agent i and a state
si where for a α ∈ si it holds pG(α) < εmin, where εmin ∈ R

+ is the smallest
floating number representable on the respective hardware platform.

c) The learning time allotted to the algorithm is exceeded, i.e. λmax learning
episodes have been processed without situation a) and b) having occurred.

Note that, although no convergence is achieved in cases b) and c), the algorithm
does not diverge – in fact, it rather stops its learning process too early. At least,
in these cases we can use the value of the presumed joint equilibrium found so
far (rmax) as an indicator of the true equilibrium that eventually would have
been discovered if λmax was larger or εmin smaller.

4 Empirical Evaluation

In this section, we use the class of DEC-MDPs with changing action sets to model
job-shop scheduling problems (JSSP), and we evaluate the performance of JEPS
and JEPSG in this context using various established scheduling benchmarks.

4.1 Application Domain: Job-Shop Scheduling

The goal of scheduling is to allocate a specified number of jobs to a limited num-
ber of resources (also called machines) such that some objective is optimized. In
2 According to the IEEE standard for binary floating-point arithmetic (IEEE 754),

when using 64 bit, the smallest number is approximately 2.2 · 10−308 (double type).
3 This case is more likely to occur, the larger |PG| is.

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 69

job-shop scheduling n jobs must be processed on m machines in a given order.
Each job j consists of νj operations oj,1 . . . oj,νj that have to be handled on a cer-
tain resource for a specific duration. A job is finished after its last operation has
been entirely processed (completion time fj). In general, scheduling objectives
to be optimized all relate to the completion time of the jobs. In this paper, we
concentrate on the goal of minimizing maximum makespan (Cmax = maxj{fj}),
which corresponds to finishing processing (and hence reaching the final state sf)
as quickly as possible, since most publications on results for job-shop scheduling
benchmarks focus on that objective, too.

r1 r2 r3 r4 r5 r6Resources:

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

3 1 2 4 6 5

2 3 5 6 1 4

3 4 6 1 2 5

2 1 3 4 5 6

3 2 5 6 1 4

2 4 6 1 5 3

d=9

d=4

execution on r4

execution on r6

Time 0 10 20 30 40 50
makespan Cmax=55

r1

r2

r3

r4

r5

r6

Path of
Job 2

Fig. 1. Example Job-Shop Scheduling Problem FT6 (left) and Optimal Solution (right)

Solving JSSPs is well-known to be NP-hard. Over the years, numerous bench-
mark problem instances of varying sizes have been proposed and have been fre-
quently used to compare different solution approaches. We revert to a collection
of sample problems that is provided by the OR Library [1]. A common charac-
teristic of those scheduling benchmarks is that usually no recirculation of jobs
is allowed, i.e. that each job must be processed exactly once on each resource
(νj = m). Figure 1 shows an example of a small job-shop scheduling problem
with six resource and six jobs consisting of six jobs each; also an optimal solution
of that problem with respect to minimal makespan is illustrated using a Gantt
chart. For more details on scheduling, the reader is referred to [10,4].

We model JSSPs as factored m-agent DEC-MDPs with changing action sets
as follows. We attach to each of the resources one agent i whose local action is
to decide which waiting job to process next. Agent i’s local state of i can be
fully described by the changing set of jobs currently waiting for further process-
ing. Choosing and executing a job represents a local action (Ai is the set of
jobs that must be processed on resource i), which is why it holds Si = P(Ai).
After finishing the processing of a job’s operation, this job is transferred to an-
other resource, where the order of resources on which a job’s operations must
be processed is given a priori. In conjunction with the no recirculation property
mentioned above, in fact, each job (one of its operations, respectively) has to
be executed on each resource exactly once. As a consequence, for JEPSG is will
be sufficient that each agent stores one action probability parameter for each
job.

70 T. Gabel and M. Riedmiller

4.2 Benchmark Results

Given an instance of a JSSP, all agents process waiting jobs in a reactive manner,
i.e. they select jobs with respect to the probability determined by their current
policy parameters, and never remain idle, if there is at least one job waiting.
When all jobs are finished and, hence, sf has been reached, the global reward
r = −Cmax is conveyed to the agents, the policy update algorithm (Algorithm
1/2) is called, and finally the system is reinitialized to the starting state where
no jobs have been processed. We allow the agents to maximally process λmax =
250k episodes, however, in most cases convergence is achieved much faster. For
consistency, during all experiments we set γ = 0.1, a value that ad hoc brought
about good results and whose optimization should be subject to further studies.

850

900

950

1000

1050

1100

1150

10 100 1000 10000 100000
Training Episodes

A
ve

ra
g

e
M

ak
es

p
an

 C
m

ax
 (

10
x1

0
p

ro
b

le
m

s)

JEPS: -r_max

JEPS: E(-r)

JEPSg: -r_max

JEPSg: E(-r)

Theoretical Optimum

Fig. 2. Learning Progress for JEPS and JEPSG

Figure 2 illustrates the learning progress averaged over 15 JSSP problems
involving 10 jobs and 10 machines using JEPS as well as JEPSG. The solid
curves show the average expected performance (in terms of makespan Cmax,
i.e. negative reward) of the stochastic joint policies subject to the number of
training episodes. Dashed curves indicate the development of the value of the
supposed joint equilibrium −rmax, as utilized by the heuristic H .

Apparently the −rmax and E[−r] curves approach each other much faster for
the JEPSG variant of the algorithm than for JEPS with local policy parame-
terization. For the 15 scenarios considered, JEPSG converges at the latest after
about 11k episodes (note the log scale x-axis). By contrast, JEPS needs much
longer to yield convergence, but achieves finding slightly superior values of rmax,
i.e. on average the learnt joint policy comes closer to the true joint equilibrium
(indicated by the average theoretical optimum for the scenarios considered).

The limitation of the basic form of JEPS becomes obvious when having a look
at the sizes of the policies that must be kept in memory by the agents (see the
rightmost columns in the of the JEPS and JEPSG part in Table 1, measured
in bytes per policy). Since the number of policy parameters grows exponentially

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 71

Table 1. Learning results for scheduling benchmarks of varying size, opposed for JEPS
and JEPSg . All entries are averaged over #Prbl. #a, #b, and #c correspond to the
convergence possibilities listed in Section 3.2. The last column in each part shows the
average size of a policy measured in bytes. Err. columns denote the relative remaining
error (%) of the makespan (−rmax) achieved by the joint policy compared to the theo-
retical optimum and, thus, indicate to what extent reaching the true joint equilibrium
was missed. Indices a, b, c stand for problem sets provided by different authors.

Size Theor. JEPS Pol. JEPSG Pol.
m × n #Prbl Optim. #a −rmax E[−r] Err. Size #a #b #c −rmax E[−r] Err. Size
5 × 10 5 620.2 5 631.8 631.8 1.9% 1029k 4 0 1 635.4 644.2 2.5% 0.6k
5 × 15 5 917.6 5 917.6 917.6 0.0% 18M 5 0 0 917.6 917.6 0.0% 1.1k
5 × 20 6 1179.2 0 - - - ∞ 5 1 0 1188.3 1196.5 0.8% 1.5k

10 × 10a 3 1035.7 3 1071.0 1071.0 3.4% 3.5M 3 1 0 1076.7 1076.7 3.9% 1.2k
10 × 10b 5 864.2 5 902.4 902.4 4.4% 973k 5 1 0 894.2 894.2 3.5% 1.1k
10 × 10c 9 898.2 8 935.3 937.9 4.1% 6.4M 8 1 0 952.4 953.6 6.0% 1.2k
10 × 15 5 983.4 0 - - - ∞ 2 1 2 1032.4 1142.4 5.0% 2.1k
15 × 15 5 1263.2 0 - - - ∞ 3 1 1 1341.2 1375.8 6.1% 3.0k
15 × 20 3 676.0 0 - - - ∞ 0 0 3 732.0 819.7 8.3% 4.1k

with n, the application of JEPS for m × n problems with larger values of n is
infeasible due to excessive memory requirements. On the contrary, the average
policy sizes of JEPSG agents are negligible. Here, instead the underflow problem
(cf. Section 3.2) may occur for larger values of n. However, using JEPSG, policies
of high quality can be learnt even for larger-sized problem instances.

The remaining error values achieved can well compete with alternative ap-
proaches that tackle the scheduling problem from a decentralized perspective
(centralized algorithms mostly find the optimum). For example, dispatching pri-
ority rules are clearly outperformed (best rules are SPT, which chooses oper-
ations with shortest processing time, and AMCC [9], which is a heuristic to
avoid the maximum current Cmax, with an average error of 20.6% and 7.8%
for the 46 problems mentioned in Table 1). OA-NFQ [6], a value-function based
reinforcement learning approach to these problems, reaches an error of 4.2%.

We expect that, in future work, we will be able to further boost the per-
formance of JEPS. In the version presented the reactive functioning of JEPS
can generate schedules of the class Sn of non-delay schedules exclusively: If a re-
source has finished processing one operation and has at least one job waiting, the
respective agent immediately continues processing by picking one of the waiting
jobs. JEPS does not allow a resource to remain idle, if there is more work to be
done. From scheduling theory, however, it is known that for certain scheduling
problem instances the optimal schedule may be a delay schedule from the set of
active schedules Sa � Sn, i.e. a schedule where some resource has to remain idle
for some time units in order to achieve minimal makespan. As a consequence,
JEPS is currently able to produce near-optimal schedules from Sn and may miss
the best schedule possible, though in several cases the true joint equilibrium is
indeed found. Yet, an extension of JEPS towards behaving not purely reactively
depicts an important and promising issue for future work.

72 T. Gabel and M. Riedmiller

5 Conclusion

We have presented a multi-agent policy search method, JEPS, that is effective in
learning joint equilibria, or near-optimal approximations thereof, for decentral-
ized Markov decision processes with changing action sets. Using a variant of the
algorithm that employs a highly compacted policy representation, it is possible
to apply JEPS to even larger problem instances without impairing performance.

A limiting factor of the approach is the necessity for a heuristic that indicates
whether a joint equilibrium has been reached by the ensemble of agents. In
future work, we will investigate more sophisticated versions of this heuristic
and, moreover, we will explore state of the art mechanisms, such as policy-
gradient descent methods, for updating the policy parameters, which we expect
to significantly speed up the learning process.

Acknowledgements. This research has been supported by the German Re-
search Foundation (DFG) under grant number Ri 923/2-3.

References

1. Beasley, J.: Or-library (2005),
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

2. Bernstein, D., Givan, D., Immerman, N., Zilberstein, S.: The Complexity of De-
centralized Control of Markov Decision Processes. Mathematics of Operations Re-
search 27(4), 819–840 (2002)

3. Brafman, R., Tennenholtz, M.: Learning to Cooperate Efficiently: A Model-Based
Approach. Journal of Artificial Intelligence Research 19, 11–23 (2003)

4. Brucker, P., Knust, S.: Complex Scheduling. Springer, Berlin (2006)
5. Fulda, N., Ventura, D.: Incremental Policy Learning: An Equilibrium Selection

Algorithm for Reinforcement Learning Agents with Common Interests. In: Pro-
ceedings of the 2004 IEEE International Joint Conference on Neural Networks
(IJCNN), Budapest, Hungary, pp. 1121–1125. IEEE Computer Society Press, Los
Alamitos (2004)

6. Gabel, T., Riedmiller, M.: Adaptive Reactive Job-Shop Scheduling with Learning
Agents. International Journal of Information Technology and Intelligent Comput-
ing 2(4) (2008)

7. Gabel, T., Riedmiller, M.: Reinforcement Learning for DEC-MDPs with Changing
Action Sets and Partially Ordered Dependencies. In: Proceedings of the 7th Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2008), Estoril, Portugal (to appear, 2008)

8. Lauer, M., Riedmiller, M.: An Algorithm for Distributed Reinforcement Learning in
Cooperative Multi-Agent Systems. In: Proceedings of the International Conference
on Machine Learning (ICML 2000), Stanford, USA, pp. 535–542. AAAI Press,
Menlo Park (2000)

9. Mascis, A., Pacciarelli, D.: Job-Shop Scheduling with Blocking and No-Wait Con-
straints. European Journal of Operational Research 143, 498–517 (2002)

10. Pinedo, M.: Scheduling. Theory, Algorithms, and Systems. Prentice Hall, USA
(2002)

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

	Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems
	Introduction
	Joint Equilibrium Policy Search
	Basics
	Learning Joint Policies
	Discussion

	JEPS with Global Action Parameterization
	Learning Total Orders of Action Execution
	Discussion

	Empirical Evaluation
	Application Domain: Job-Shop Scheduling
	Benchmark Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

