
ADAPTIVE REACTIVE JOB-SHOP
SCHEDULING WITH REINFORCEMENT

LEARNING AGENTS

Thomas GABEL, Martin RIEDMILLER

Neuroinformatics Group
Institute of Cognitive Science

Department of Mathematics and Computer Science
University Osnabrück

49069 Osnabrück, Germany
E-mail: {thomas.gabel|martin.riedmiller}@uos.de

Abstract
Traditional approaches to solving job-shop scheduling problems assume
full knowledge of the problem and search for a centralized solution
for a single problem instance. Finding optimal solutions, however, re-
quires an enormous computational effort, which becomes critical for
large problem instance sizes and, in particular, in situations where fre-
quent changes in the environment occur. In this article, we adopt an al-
ternative view on production scheduling problems by modelling them as
multi-agent reinforcement learning problems. In fact, we interpret job-
shop scheduling problems as sequential decision processesand attach to
each resource an adaptive agent that makes its job dispatching decisions
independently of the other agents and improves its dispatching behavior
by trial and error employing a reinforcement learning algorithm. The
utilization of concurrently and independently learning agents requires
special care in the design of the reinforcement learning algorithm to
be applied. Therefore, we develop a novel multi-agent learning algo-
rithm, that combines data-efficient batch-mode reinforcement learning,
neural network-based value function approximation, and the use of an
optimistic inter-agent coordination scheme. The evaluation of our learn-
ing framework focuses on numerous established Operations Research
benchmark problems and shows that our approach can very wellcom-
pete with alternative solution methods.

Keywords: reinforcement learning, multi-agent systems, job-shop sche-
duling, neural networks

To appear in: International Journal of Information Technology and Intelligent Computing.
c© IEEE Press 2008

1 Introduction

The basic idea behind reinforcement learning (RL) is to let (software)
agents acquire a control policy on their own on the basis of trial and error
by repeated interaction within their environment [33]. Theempirical evalu-
ation of reinforcement learning algorithms frequently focuses on established
benchmark problems such as the cart-pole, the mountain car,or the bicycle
benchmark. These problems are clearly defined and allow for adistinct com-
parison of RL methods, notwithstanding the fact that, from apractitioner’s
point of view, they are still far away from the problem sizes to be tackled in
real-world problems. In this work, we aim at bridging the gapbetween fo-
cusing on artificial RL benchmark problems and real-world applications. We
spotlight job-shop scheduling problems (JSSPs), a specificclass of problems
from the field of production scheduling, as an interesting type of benchmark
problems that feature both the character of standardized, well-defined task de-
scriptions as well as the property of representing application-oriented and ex-
tremely challenging problems.

In production scheduling, tasks have to be allocated to a limited number of
resources in such a manner that one or more objectives are optimized. Though
various classical approaches can be shown to provide optimal solutions to vari-
ous scheduling problem variants, they typically do not scale with problem size,
suffering from an exponential increase in computation time. In previous work
[32, 13], we have explored a novel alternative approach to production schedul-
ing that performs reactive scheduling and is capable of producing approximate
solutions in minimal time. Here, each resource is equipped with a scheduling
agent that makes the decision on which job to process next based solely on its
local view on the plant. As each agent follows its own decision policy, thus
rendering a central control unnecessary, this approach is particularly suitable
for environments where unexpected events, such as the arrival of new tasks or
machine breakdowns, may occur and, hence, frequent re-planning would be
required.

We employ reinforcement learning to let the scheduling agents adapt their
behavior policy, based on repeatedly collecting experience within their envi-
ronment and on receiving positive or negative feedback (reinforcement sig-
nals) from that environment. After thatlearning phase, each agent will have
obtained a purposive, reactive behavior for the respectiveenvironment. Then,
during theapplicationphase, e.g. during application in a real plant, each agent
can make its scheduling decisions very quickly by utilizingits reactive behav-
ior.

Reinforcement learning and job-shop scheduling depict thetwo central

concepts covered in this article. Accordingly, in Section 2we start off by
briefly introducing notation and reviewing some basics of RLand job-shop
scheduling. Moreover, we discuss basic modelling alternatives for solving job-
shop scheduling problems by means of using reinforcement learning, point to
related work, and clarify similarities and differences between our approach to
solving JSSPs and other techniques from the fields of Operations Research
and Artificial Intelligence. Section 3 presents in detail our multi-agent rein-
forcement learning approach for performing reactive scheduling. In Section
4, we we focus on different advanced research questions that arise when aim-
ing at the application of our learning framework for large-scale problems of
current standards of difficulty. The experimental part of this article (Section
5) concentrates on established Operations Research benchmark problems for
job-shop scheduling and contrasts the performance of our adaptive approach
to several analytical and heuristic ones. Furthermore, we analyze the general-
ization capabilities of the learned dispatching policies,discuss the results, and
prospect important topics for future work.

2 Foundations

This article is concerned with a number of different lines of research.
Therefore, this section introduces the notation used subsequently and cov-
ers basics of reinforcement learning, job-shop scheduling, and multi-agent
scheduling that are relevant in the scope of this article. Furthermore, relevant
related work is highlighted.

2.1 Basics of Reinforcement Learning

One of the general aims of machine learning is to produce intelligent soft-
ware systems, sometimes called agents, by a process of learning and evolv-
ing. Reinforcement learning represents one approach that may be employed
to reach that goal. In an RL learning scenario the agent interacts with its ini-
tially unknown environment, observes the results of its actions, and adapts its
behavior appropriately. To some extent, this imitates the way biological beings
learn.

In each time step, an RL agent observes the environmental state and makes
a decision for a specific action, which, on the one hand, may incur some im-
mediate costs1 (also called reinforcement) generated by the agent’s environ-

1The notion ofrewards is basically equal to the notion of costs we are employing. Costs
correspond to negative rewards.

ment and, on the other hand, transfers the agent into some successor state. The
agent’s goal is not to minimize the immediate costs, but its long-term, expected
costs. To do so it must learn a decision policyπ that is used to determine the
best action for a given state. Such a policy is a function thatmaps the current
states ∈ S to an actiona from a set of viable actionsA.

The basic reinforcement learning paradigm is to learn the mapping π :
S → A only on the basis of the reinforcement signals the agent getsfrom its
environment. By repeatedly performing actions and observing corresponding
costs, the agent tries to improve and fine-tune its policy. Research in RL has
brought about a variety of algorithms that specify how experience from past
interaction is used to adapt the policy. Assuming that a sufficient amount of
states has been observed and costs/rewards have been received, the optimal
decision policy will have been found and the agent followingthat policy will
behave perfectly in the particular environment.

The standard approach to modelling reinforcement learningproblems is
to use Markov Decision Processes (MDP). An MDP is a 4-tuple (A,S, c, p)
whereS andA denote the state and action spaces, respectively,p : S × A ×
S→ [0, 1] is a probabilistic state transition function withp(s, a, s′) describing
the probability to end up ins′ when taking actiona in states. Moreover,
c : S × A → R is a cost function that denotes the immediate costs that arise
when taking a specific action in some state. In search of an optimal behavior,
the learning agent must differentiate between the value of possible successor
states or the value of taking a specific action in a certain state. Typically, this
kind of ranking is made by computing a state or state-action value function,V :
S→ R or Q : S×A→ R, which bear information about the prospective value
of states or state-action pairs, respectively. Having determined the optimal
value function, i.e. the one that correctly reflects the expected costs to go for
a state or state-action pair for the respective environment, this function can
easily be employed to induce the best action in a given state,e.g. by evaluating
arg minb∈A Q(s, b). For more basics and a thorough review of state-of-the-art
reinforcement learning methods we refer to [33].

2.2 Basics of Job-Shop Scheduling

The goal of scheduling is to allocate a specified number of jobs (also called
tasks) to a limited number resources (also called machines)in such a manner
that some specific objective is optimized. In job-shop scheduling n jobs must
be processed onm machines in a given order. Each jobj (j ∈ {1, . . . , n})
consists ofv j operationso j,1, . . . , o j,vj that have to be handled on a specific
resource for a certain duration. A job is finished after completion of its last

operation (completion timec j).

Figure 1. A simple job-shop scheduling problem instance (ft6) with 6 resources and
6 jobs and a Gantt chart representation of an optimal solution.

Figure 1 shows a 6×6 (6 resources and 6 jobs,m= n = 6) problem instance
from [22]. In this example, job 2 must first be processed on resource 2 for 8
time units, then go to resource 3 for 5 time steps, and so on. Resource 3 may
start processing with job 1, 3, or 5. Over the years, numerousbenchmark prob-
lem instances like this have been proposed and are publicly available (e.g. from
the OR Library [4]). Most of them are, of course, much more complex and cer-
tain examples remained unsolved for decades. For other, larger-scale instances
there is still no optimal solution known. Common characteristic of these JSSPs
is that usually no recirculation is allowed, i.e. that each job has to be processed
exactly once on each resource, implying thatv j = m. Though there are also
stochastic scheduling problems, in the scope of this work wefocus on deter-
ministic ones only.

In general, scheduling objectives to be optimized all relate to the comple-
tion times of the jobs. For example, it may be desired to minimize the jobs’
due date violations or the number of jobs that are late. In this paper, however,
we focus on the objective of minimizing maximum makespanCmax, which is
the length of the schedule (Cmax= max{c j}), since most publications on results
achieved for JSSP benchmarks focus on that objective, too. The Gantt chart in
Figure 1 shows an optimal solution for that 6×6 benchmark (Cmax= 55) whose
makespan is 55. For further details on scheduling theory andits applications
the reader is referred to [27].

2.3 Multi-Agent View on Job-Shop Scheduling Problems

Basically, there are two ways of modelling a JSSP as a Markov Decision
Process (MDP, [29]). The straightforward alternative is tointerpret a schedul-
ing problems as asingleMDP. We can represent the states(t) ∈ S of the system
by the situation of all resources as well as the processing status of all jobs. Ad-
ditionally, a terminal statesf describes the situation when all jobs have been
finished, i.e.sk(t) = sf for all t ≥ Cmax. An actiona(t) ∈ A describes the de-
cision of which jobs are to be processed next on the resources. Moreover, we
can say that the overall goal of scheduling is to find a policyπ⋆ that minimizes
production costsc(s, a, t) accumulated over time

π⋆ := min
π

Cmax
∑

t=1

c(s, a, t). (1)

Costs may depend on the current situation, as well as on the selected decision,
and have to relate closely to the desired optimization goal (e.g. they may occur
when a job violates its due date).

The second modelling alternative extends the first one by interpreting JSSPs
as amulti-agentMarkov Decision Process (MMDP, [10]). Here, we associate
to each of them resources an agentk that locally decides on elementary ac-
tionsak(t). So, an elementa(t) = (a1(t), . . . , am(t)) of the joint action space is
a vector composed ofm elementary actions that are assumed to be executed
concurrently. For example, starting to process the examplein Figure 1 the
agent associated to resourcek = 3 must decide which job to process next at
this resource, where its set of actions att = 1 is A3(1) = {1, 3, 5}.

In scheduling theory, a distinction betweenpredictiveproduction schedul-
ing (also called analytical scheduling or offline-planning) andreactiveschedul-
ing (or online control) is made [9]. While the former assumescomplete knowl-
edge over the tasks to be accomplished, the latter is concerned with making
local decisions independently. Obviously, a single MDP modelling gives rise
to analytical scheduling, whereas the MMDP formulation corresponds to per-
forming reactive scheduling. In the following we prefer theMMDP modelling,
hence, doing reactive scheduling, for the following reasons.

• Reactive scheduling features the advantage of being able toreact to un-
foreseen events (like a machine breakdown) appropriately without the
need to do complete re-planning.

• Operations Research has to the bigger part focused on analytical schedul-
ing and yielded numerous excellent algorithms (e.g. branch-and-bound)

capable of finding the optimal schedule in reasonable time when the
problem dimension (m× n) is not too large and when being provided
with complete knowledge over the entire problem. By contrast, reactive
scheduling approaches are decentralized by definition and,hence, the
task of making globally optimal decisions is aggravated. Accordingly,
many interesting open research questions arise.

• From a practical point of view, a centralized control cannotalways be
instantiated, why the MMDP formulation is of higher impact to real-
world applications.

2.4 Related Work

Job-shop scheduling has received an enormous amount of attention in the
research literature. As mentioned in Section 2.3, researchin production schedul-
ing traditionally distinguishes predictive and reactive solution approaches. As-
suming complete knowledge about the entire scheduling problem to be solved
(thus about all jobs, their operations and belonging durations as well as about
the resources and which operations must be executed on whichresource), and
aiming at the achievement of global coherence in the processof job dispatch-
ing, Operations Research has brought about a variety of predictive scheduling
algorithms that yield optimal solutions for individual problem instances – at
least up to certain problem sizes, since the computational effort scales expo-
nentially with problem size. By contrast, reactive scheduling approaches sup-
port decentralized, local decision making, which is beneficial when no central-
ized control can be instantiated (e.g. when a factory’s resource does not know
about the current workload at any other resource) or when quick responses to
unexpected events are required. Most of the approaches thatutilize ideas from
research in Artificial Intelligence to solve scheduling problems belong to the
realm of predictive scheduling.

Classical, predictive approaches to solving job-shop scheduling problems
cover, for instance, disjunctive programming, branch-and-bound algorithms
[2], or the shifting bottleneck heuristic [1]—a thorough overview is given in
[28]. Moreover, there is a large number of local search procedures to solve
job-shop scheduling problems. These include beam search [25], simulated an-
nealing [34], tabu search [23], greedy randomized adaptivesearch procedures
(GRASP, [8]), as well as squeaky wheel optimization [16]. Furthermore, var-
ious different search approaches have been suggested based on evolutionary
techniques and genetic algorithms (e.g. [3] or [24]).

In contrast to these analytical methods yielding to search for a single prob-

lem’s best solution, our RL-based approach belongs to the class of reactive
scheduling techniques. Most relevant references for reactive scheduling cover
simple as well as complex dispatching priority rules (see [26] or [7]). Focusing
on job-shop scheduling with blocking and no-wait constraints, in [20] the au-
thors develop heuristic dispatching rules (such as AMCC, cf. Section??) that
are suitable for online control. but that benefit from havinga global view onto
the entire plant when making their dispatch decisions.

Using our reactive scheduling approach, the finally resulting schedule is
not calculated beforehand, viz before execution time. Insofar, our RL ap-
proach to job-shop scheduling is very different from the work of Zhang and
Dietterich [38] who developed a repair-based scheduler that is trained using
the temporal difference reinforcement learning algorithm and that starts with a
critical-path schedule and incrementally repairs constraint violations. Mahade-
van et al. have presented an average-reward reinforcement learning algorithm
for the optimization of transfer lines in production manufacturing which re-
sembles a simplifying specialization of a scheduling problem. They show that
the adaptive resources are able to effectively learn when they have to request
maintenance [19], and that introducing a hierarchical decomposition of the
learning task is beneficial for obtaining superior results [35]. Another repair-
based approach relying on an intelligent computing algorithm is suggested by
[37] who make use of case-based reasoning and a simplified reinforcement
learning algorithm to achieve adaptation to changing optimization criteria.

3 A Multi-Agent Reinforcement Learning Approach to
Reactive Production Scheduling

In this section, we propose an approach to production scheduling problems
that allows to combine the desire for obtaining near-optimal solutions with the
ability to perform reactive scheduling, realized by resource-coupled schedul-
ing agents that make their dispatching decisions in real-time. The dispatching
rules implemented by the agents are, however, not fixed, but are autonomously
adapted instead by getting feedback of the overall dynamic behavior of the
whole production plant.

3.1 System Architecture

As described in Section 2.3 we adopt a multi-agent perspective on per-
forming job-shop scheduling. So, to each of the resources weattach an adap-
tive agent that is capable of improving its dispatching behavior with the help of

reinforcement learning. The agents’ task is to decide whichjob to process next
out of the set of jobs that are currently waiting for further processing at some
resource. Accordingly, an agent cannot take an action at each discrete time step
t, but only after its resource has finished one operation. Therefore, the agent
makes its decisions after time intervals whose lengths∆tk are determined by
the durations of the operations processed.

The global views(t) on the plant, including the situation at all resources
and the processing status of all jobs, would allow some classical solution al-
gorithm (like a branch-and-bound method) to construct a disjunctive graph for
the problem at hand and solve it. In this respect, however, weintroduce a
significant aggravation of the problem: First, we require a reactive scheduling
decision in each state to be taken in real-time, i.e. we do notallot arbitrary
amounts of computation time. Second, we restrict the amountof state infor-
mation the agents get. Instead of the global view, each agentk has a local view
sk(t) only, containing condensed information about its associated resource and
the jobs waiting there. On the one hand, this partial observability increases the
difficulty in finding an optimal schedule. On the other hand, it allows for com-
plete decentralization in decision-making, since each agent is provided with
information only that are relevant for making a local decision at resourcek.
This is particularly useful in applications where no globalcontrol can be in-
stantiated and where communication between distributed working centers is
impossible. Nevertheless, the number of features providedto a single agent,
viz the local view, is still large and forces us tackle a high-dimensional contin-
uous state-action space.

The feature vectors representing statessk ∈ S and actions/jobs ak ∈ Ak,
as generated by the resources’ local view, have to exhibit some relation to the
future expected costs, hence to the makespan, and must allowfor a compre-
hensive characterization of the current situation. Moreover, it is advisable to
define features that represent properties of typical problem classes instead of
single problem instances, so that acquired knowledge is general and valid for
similar problems as well. With respect to the desired real-time applicability
of the system, the features should also be easy to compute, enabling a max-
imum degree of reactivity. State features depict the current situation of the
resource by describing its processing state and the setAk of jobs currently
waiting at that resource. That job set characterization includes the resource’s
current workload, an estimation of the earliest possible job completion times,
or the estimated makespan. Furthermore, we capture characteristics ofAk by
forming relations between minimal and maximal values of certain job proper-
ties over the job set (like operation duration times or remaining job processing

times). Action features characterize single jobsak from Ak currently selectable
by k. Here, we aim at describing makespan-oriented properties of individual
jobs (like processing time indices), as well as immediate consequences to be
expected when processing that job next, viz the properties of the job’s remain-
ing operations (e.g. the relative remaining processing time). Apart from that,
action features cover the significance of the next operationo ji ,next of job j i
(e.g. its relative duration).

3.2 Details of the Learning Algorithm

When there is no explicit model of the environment and of the cost struc-
ture available, Q learning [36] is one of the RL methods of choice to learn a
value function for the problem at hand, from which a control policy can be
derived. The Q functionQ : S × A → R expresses the expected costs when
taking a certain action in a specific state. The Q update rule directly updates
the values of state-action pairs according to

Q(s, a) := (1− α)Q(s, a) + α(c(s, a, s) + γ min
b∈A(s)

Q(s, b)) (2)

whereα is the learning rate,γ the discount factor, and where the successor state
s and the immediate costsc(s, a, s) are generated by simulation or by interac-
tion with a real process. For the case of finite state and action spaces where
the Q function can be represented using a look-up table, there are convergence
guarantees that say that Q learning converges to the optimalvalue functionQ⋆,
assumed that all state-action pairs are visited infinitely often and thatα dimin-
ishes appropriately. Given convergence toQ⋆, the optimal policyπ⋆ can be in-
duced by greedy exploitation ofQ according toπ⋆(s) = arg mina∈A(s) Q⋆(s, a).

Since our approach enforces a distributed decision-makingby indepen-
dent agents, the Q update rule is implemented within each learning agent and
adapted to the local decision process (α = 1 for better readability):

Qk(sk(t), ak(t)) := Csa(t,∆tk) (3)

+γ min
b∈Ak(t+∆tk)

Qk(sk(t + ∆tk), b)

This learning rule establishes a relation between the localdispatching decisions
and the overall optimization goal, since the global immediate costs are taken
into consideration (e.g. costs caused due to tardy jobs). Since a resource is not
allowed to take actions at each discrete time step2, Csa collects the immediate

2After having started operationoj i the resource remains busy until that operation is finished.

global costs arising betweent and the next decision time pointt+∆tk according
to

Csa(t,∆tk) :=
t+∆tk
∑

i=t

C(s, a, i). (4)

If we assume convergence ofQk to the optimal local value functionQ⋆k , we
obtain a predictor of the expected accumulated global coststhat will arise,
when in statesk a job denoted byak would be processed next. Then, a policyπ
that exploitsQk greedilywill lead to optimized performance of the scheduling
agent. A policy greedily exploiting the value function chooses its actionak(t)
as follows

ak(t) := π(sk, ak, t) = min
b∈Ak(t)

Qk(sk(t), b). (5)

As indicated in the Introduction, we distinguish between the learning and the
application phases of the agents’ dispatching policies. During the latter, the
learnedQk function is exploited greedily according to Equation 5. During the
former, updates toQk are made (cf. Equation 4) and an exploration strategy is
pursued which chooses random actions with some probability.

Assuming a typicalm× n job-shop scheduling problem, it is clear that the
transition graph of the system is acyclic and the number of states till reaching
sf is finite. Therefore, all policies are always proper and the problem horizon
is finite, whyγ can safely be set to one (no discounting).

When considering a single job-shop problem, the number of possible states
is, of course, finite. The focal point of our research, however, is not to con-
centrate just on individual problem instances, but on arbitrary ones. Hence,
we need to assume the domain of Q to be infinite or even continuous, and will
have to employ a function approximation mechanisms to represent it.

A crucial precondition for our adaptive agent-based approach to learning
to make sophisticated scheduling decisions is that the global direct costs (as
feedback to the learners) coincide with the overall objective of scheduling. We
define the global costsC to be the sum of the costs that are associated with the
resources (sum overk) and jobs (sum overi):

C(s, a, t) :=
m

∑

k=1

uk(s, a, t) +
n

∑

i=1

r ji (s, a, t) (6)

When focusing on minimizing overall tardiness, it is possible to setuk ≡ 0 and
to let r ji capture the tardinessT ji = max(0, c ji − d ji) of the jobs by

r ji (s, a, t) :=

{

T ji , if j i is being finished att
0 , else

(7)

A disadvantage of that formulation is that the cost functiondoes not reflect
when the tardiness actually occurs. Since that informationmay help the learn-
ing algorithm, we prefer the following, equivalent formulation, which assigns
costs at each time step during processing:

r ji (s, a, t) :=

{

1 , if j i is tardy att
0 , else

(8)

Equations 7 and 8 are no longer useful when the overall objective is to mini-
mize the makespanCmax of the resulting schedule. Accordingly, information
about tardy jobs or finishing timesc ji of individual jobs provide no meaningful
indicator relating to the makespan. However, the makespan of the schedule is
minimized, if as many resources as possible are processing jobs concurrently
and if as few as possible resources with queued jobs are in thesystem: Usually,
a high utilization of the resources implies a minimal makespan [27], i.e. the
minimal makespan of a non-delay schedule3 is achieved when the number of
time steps can be minimized during which jobs are waiting forprocessing at
the resources’ queues. This argument gives rise to settingr ji ≡ 0 and to defin-
ing

uk(s, a, t) := |{ j i | j i queued atk}| (9)

so that high costs are incurred when many jobs, that are waiting for further
processing, are in the system and, hence, the overall utilization of the resources
is poor.

3.3 Value Function Approximation with Neural Networks

Since an agent’s value functionQk has an infinite domain, we need to em-
ploy some function approximation technique to represent it. In this work, we
use multilayer perceptron neural networks to represent thestate-action value
function. On the one hand, feed-forward neural networks areknown to be
capable of approximating arbitrarily closely any functionf : D → R that is
continuous on a bounded setD [15]. On the other hand, we aim at exploiting
the generalization capabilities of neural networks yielding general dispatching
policies, i.e. policies which are not just tuned for the situations encountered
during training, but which are general enough to be applied to unknown situ-
ations, too. Input to a neural net are the features (cf. Section 3.1) describing
the situation of the resource as well as single waiting jobs4. Thus, the neural

3Concerning the discussion of considering non-delay vs. delay schedules we refer to Section
5.5.

4In the experiments whose results we describe in Section 5, wemade use of seven state
features and six action features, hence having 13 inputs to the neural network.

network’s output valueQk(sk, ak) directly reflects the priority value of the job
corresponding to actionak depending on the current statesk (see Figure 2).

Resource

r2

set of jobs waiting

Agent 2

Job 2

Job 4

Job 6
F

ea
tu

re
G

en
er

at
io

nState and Action Features (sk,ak)���
...

�... ���
...

�... � Selection of
Best Action

Q

a2

a4

a6

Figure 2. Representing the state-action value function with a neuralnetwork whose
input are state and action features describing the resource’s current situation. The first
operation of each of the jobs 2, 4, and 6 has to be processed on resourcer2.

A critical question concerns the convergence of the learning technique to
a (near-)optimal decision policy when used in conjunction with value func-
tion approximation. In spite of a number of advantages, neural networks are
known to belong to the class of “exaggerating” value function approximation
mechanisms [14] and as such feature the potential risk of diverging. There are,
however, several methods for coping with the danger of non-convergent behav-
ior of a value function-based reinforcement learning method and to reduce the
negative effects of phenomenons like chattering and policy degradation. Since
a thorough discussion of that concern is beyond the scope of this article, we
refer to relevant literature [5, 6, 21].

In order to be able to safely apply our learning approach to reactive schedul-
ing to complex benchmark problems, we rely onpolicy screening, a straight-
forward, yet computationally intensive method for selecting high-quality poli-
cies in spite of oscillations occurring during learning (suggested by Bertsekas
and Tsitsiklis [5]): We let the policies generated undergo an additional eval-
uation based on simulation (by processing problems from a separate set of
screening scheduling problemsSS), which takes place in between single iter-
ations of the NFQ learning algorithm (see Section 4.1). As a result, we can
determine the actual performance of the policy representedby the Q function
in each iteration of the algorithm and, finally, detect and return the best policy
created.

4 Fitted Q Iteration with Neural Networks and Opti-
mistic Assumption

In Section 3, we have outlined the general characteristics and several de-
sign decision of our learning framework. The important issue of how to update
the agents’ state-action value functionsQk, however, has been touched only
briefly: Equation 4 provides an adaptation of the general Q learning update
rule to the type of learning problems we are considering, by means of which
data-inefficient online Q learning without an attempt to enforce coordination
between multiple agents may be realized. In the following, however, we ad-
dress the problems of utmost efficient training data utilization and adequate
inter-agent coordination, which are of fundamental importance for obtaining
learning results of high quality.

4.1 Training Data Utilization

In Section 3.2 we have pointed to the distinction between thelearning and
the application phase of our adaptive scheduling approach.During the learn-
ing phase, a setSL of scheduling problem instances is given – these problems
are processed on the plant repeatedly, where the agents are allowed to sched-
ule jobs randomly, i.e. to not greedily exploit theirQk, with some probability,
obtaining new experiences that way. In principle, it is possible to perform an
update on the state-action value function according to Equation 4 after each
state transition. However, in the light of problem dimensions that are consid-
erable from a reinforcement learning perspective, it is inevitable to foster fast
improvements of the learned policy by exploiting the training data as efficiently
as possible. For this purpose, we revert to neuralfitted Q iteration.

Fitted Q iteration denotes a batch (also termed off-line) reinforcement learn-
ing framework, in which an approximation of the optimal policy is computed
from a finite set of four-tuples [12]. The set of four-tuplesT = {(si , ai , ci , si)|i =
1, . . . , p} may be collected in any arbitrary manner and corresponds to single
“experience units” made up of statessi, the respective actionsai taken, the im-
mediate costsci incurred, as well as the successor statessi entered. The basic
algorithm takesT, as well as a regression algorithm as input, and after having
initialized Q̃ and a counterq to zero, repeatedly processes the following three
steps until some stop criterion becomes true:

1. incrementq

2. build up a training setF for the regression algorithm according to:
F := {(ini , outi)|i = 1, . . . , p}

whereini = (si , ai) andouti = ci + γminb∈A(si) Q̃q−1(si , b)

3. use the regression algorithm and the training setF to induce an approxi-
mationQ̃q : S × A→ R

Subsequently, we consider neural fitted Q iteration (NFQ, [30]), a realization
of fitted Q iteration where multi-layer neural networks are used to represent
the Q function and an enhanced network weight update rule is employed (step
3). NFQ is an effective and efficient RL method for training a Q value function
that requires reasonably few interactions with the scheduling plant to generate
dispatching policies of high quality. We will discuss an adaptation of NFQ to
be used in the scope of this work in the next section.

4.2 Inter-Agent Coordination

In the literature on multi-agent learning, a distinction between joint-action
learners and independent learners is made [11]. The former can observe their
own, as well as the other agents’ action choices. Consequently, in that case
the multi-agent MDP can be reverted to a single-agent MDP with an extended
action set and be solved by some standard method. Here, however, we concen-
trate on independent learners because of the following reasons:

1. We want to take a fully distributed view on multi-agent scheduling. The
agents are completely decoupled from one another, get localstate infor-
mation, and are not allowed to share information via communication.

2. Decision-making shall take place in a distributed, reactive manner. Hence,
no agent will be aware of the jobs being processed next on other re-
sources.

3. The consideration of joint-action learners with global view on the plant
would take us nearer to giving all agents the ability to, e.g., construct a
disjunctive graph for the scheduling problem at hand and usesome clas-
sical solution method to solve it. With respect to 1) and 2), the intended
application of learned scheduling policies to unknown situations and in
presence of unexpected events, this is exactly what we intend to avoid.

We are, of course, aware that the restrictions that we imposeon our learning
agents depict a significant problem aggravation when compared to the task of
finding an optimal schedule with some analytical algorithm and full problem
knowledge.

Given the fact that the scheduling benchmarks to which we intend to apply
our learning framework are deterministic, we can employ a powerful mecha-
nism for cooperative multi-agent learning during the learning phase permitting
all agents to learn in parallel. Lauer and Riedmiller [17] suggest an algorithm
for distributed Q learning of independent learners using the so called optimistic
assumption (OA). Here, each agentassumesthat all other agents act optimally,
i.e. that the combination of all elementary actions forms anoptimal joint-action
vector. Given the standard prerequisites for Q learning, itcan be shown that the
optimistic assumption Q iteration rule (with current states, actiona, successor
states′)

Qk(s, a) := max{Qk(s, a), r(s, a) + γ max
b∈A(s′)

Qk(s
′, b)} (10)

to be applied to agent-specific local Q functionsQk converges to the optimal
Q⋆ function in a deterministic environment, if initiallyQk ≡ 0 for all k and
if the immediate rewardsr(s, a) are always larger or equal zero. Hence, the
basic idea of that update rule is that the expected returns ofstate-action pairs
are captured in the value ofQk by successively taking the maximum. For more
details on that algorithm and on the derivation of coordinated agent-specific
policies we refer to [17].

For the benchmark problems we are tackling in this work, we have to take
the following two facts into consideration: First, we are using the notion of
costs instead of rewards, so that small Q values correspond to “good” state-
action pairs incurring low expected costs (though we assumeall immediate
global costs to be larger or equal zero, cf. Equation 9). Second, we perform
batch-mode learning by first collecting a large amount of training data (state
transition tuples) and then calculating updated values to the Q functions.

To comply with these requirements, we suggest an offline reinforcement
learning method that adapts and combines neural fitted Q iteration and the
optimistic assumption Q update rule. In Figure 3, we give a pseudo-code real-
ization of neural fitted Q iteration using the optimistic assumption (OA-NFQ).
The distinctive feature of that algorithm lies in step 1 where a reduced (opti-
mistic) training setO with |O| = p′ is constructed from the original training
tuple setT (|T| = p ≥ p′). In a deterministic environment where schedul-
ing scenarios from a fixed setSL of problems are repeatedly processed during
the learning phase, the probability of entering some statesk more than once is
larger than zero. If insk a certain actionak ∈ A(sk) is taken again, when having
enteredsk for a repeated time, it may eventually incur very different costs be-
cause of different elementary actions selected by other agents. The definition
of O basically realizes a partitioning ofT into p′ clusters with respect to iden-
tical values ofsk andak (steps 1a and 1b). In step 1c the optimistic assumption

is applied which corresponds to implicitly assuming the best joint action vector
covered by the experience collected so far, i.e. assuming the other agents have
taken optimal elementary actions that are most appropriatefor the current state
and the agent’s own elementary actionak. Thus, the target valueoutj for some
state-action pairin j = (sj , a j) is the minimal sum of the immediate costs and
discounted costs to go over all tuples (sj , a j , ·, ·) ∈ T.

Input: number of Q iterationsN ∈ N, training set

Tk = {(sk(t), ak(t), c(s, a, t), sk(tnext))

| t ∈ set of decision time points}

for better readability abbreviated asTk = {(si ,ai , ci , si)|i = 1, . . . , p}

Output: state-action value functionQ(top)
k

init Q(0)
k ≡ 0

for q = 0 to N − 1 //Q iterations

1. generate optimistic training set
O = {(in j , outj)| j = 1, . . . , p′} with p′ ≤ p

with (a)∀in j ∃i ∈ {1, . . . , p} with in j = (si , ai)
(b) ini

, in j ∀i , j (i, j ∈ {1, . . . , p′})
(c)

outj := min
(si ,ai ,ci ,si)∈Tk,

(si ,ai)=in j

(

ci + γ min
b∈A(s′)

Q(q)
k (s′i , b)

)

(11)

2. train neural network givenO to induce a new Q functionQ(q+1)
k

3. do policy screening to evaluateπQ(q+1)
k

and memorizeQ(top)
k := Q(q+1)

k

in case of a policy improvement

Figure 3. OA-NFQ, a realization of neural fitted Q iteration in deterministic multi-
agent settings based on the optimistic assumption. The value function’s superscripts
in Q(q) denote the numberq of the respective Q iteration, the subscriptsk indicate the
agent.

After having constructed the training setO any suitable neural network
training algorithm can be employed for the regression task at hand (e.g. stan-
dard backpropagation or the faster Rprop algorithm [31] we use). Apart from
those net training issues, the pseudo-code of OA-NFQ in Figure 3 reflects also
the policy screening technique (cf. Section 3.3): In between individual Q iter-
ations we let the current value functionQ(q)

k and the corresponding dispatching
policy, respectively, undergo an additional evaluation based on simulating a

number of screening scheduling problems from a setSS. Via that mechanism
the best Q iteration and its belonging Q functionQ(top)

k is detected and finally
returned.

We need to stress that in presence of using a neural value function approx-
imation mechanism to represent Q and providing agents with local view infor-
mation only, neither the convergence guarantees for certain (averaging) types
of fitted Q iteration algorithms (see Ernst et al. [12] for a thorough discussion),
nor the convergence proof of the OA Q learning algorithm (supporting finite
state-action spaces, only) endure. Nevertheless, it is possible to obtain impres-
sive empirical results despite the approximations we employ, as we will show
in Section 5.

5 Empirical Evaluation

In this section, we evaluate the use of approximate reinforcement learning
for the Operations Research benchmark problems that are in the center of our
interest. In particular, we want to address the questions, if it is possible to use
our approach, utilizing the algorithms we have described inSection 4, to let
the agents acquire high-quality dispatching policies for problem instances of
current standards of difficulty. Furthermore, we want to investigate, whether
the learned policies generalize to other, similar benchmark problems, too.

Benchmark problems abz5-9 were generated by Adams et al. [1], problems
orb01-09 were generated by Applegate and Cook [2], and finally, problems
la01-20 are due to Lawrence [18]. Although these benchmarksare of different
sizes, they have in common that no recirculation occurs and that each job has
to be processed on each resource exactly once (v ji = m, i ∈ {1, . . . , n}).

5.1 Experiment Overview

Within this evaluation, we compare four different types of algorithms to
solve scheduling problems, each of them being subject to different restrictions
and following different paradigms in generating schedules.

1. Analytical Scheduling Algorithms that perform predictive scheduling
and interpret a given JSSP as a single MDP of which they have full
knowledge. They find the solution for one specific problem instance,
being unable to generalize. Since our focus is not on predictive schedul-
ing, we do not consider individual example algorithms of this group.
Instead we let this group be represented by a JSSP’s optimal solution

(minimal makespan) that may in principle be found by variousanalyti-
cal scheduling algorithms, when given infinite computational resources.

2. Global View Dispatching Rules perform reactive scheduling and cor-
respond to the MMDP view on job-shop scheduling. They take local
dispatching decisions at the respective resources, but areallowed to get
hold of more than just local state information. Instances ofthis group are
the SQNO rule (heuristic violating the local view restriction by consider-
ing information of the queue lengths at the resources where the waiting
jobs will have to be processed next) or the powerful AMCC rule(heuris-
tic to avoid the maximum currentCmax based on the idea to repeatedly
enlarge a consistent selection, given a general alternative graph repre-
sentation of the scheduling problem [20]).

3. Local View Dispatching Rules perform reactive scheduling as well and
make their decisions which job to process next based solely on their
local view on the respective resource. In the following, we consider
three instances of this group (LPT/SPT rule chooses operations with
longest/shortest processing times first, FIFO rule considers how long
operations had to wait at some resource).

4. Our approach to adaptive reactive job-shop scheduling with Reinforce-
ment Learning Agents.

Regarding the restrictions our approach is subject to (MMDPinterpretation of
a JSSP with local view) a comparison to group 3) is most self-evident. How-
ever, by approaching or even surpassing the performance of algorithms from
group 2) or by reaching the theoretical optimum, we can make acase for the
power of our approach.

5.2 Example Benchmark

To start with, we consider the notorious problem ft10 proposed by Fisher
and Thompson [22], that had remained unsolved for more than twenty years.
Here, during the learning phase,SL = {pf t10} is processed repeatedly on the
simulated plant, where the agents associated to the ten resources followε-
greedy strategies (ε = 0.5) and sample experience while adapting their behav-
iors using neural fitted Q iteration with optimistic assumption and in conjunc-
tion with the policy screening method (we setSL = SS, i.e. the screening set
contains the same problems as the training set).

We compare the performance of eight different scheduling algorithms

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 0 500 1000 1500 2000 2500 3000

M
ak

es
pa

n
 o

n
ft1

0

Learning Episodes

LPT Rule: 1295

Random: 1253

FIFO Rule: 1184

SPT Rule: 1074

RL Agents (optimal after t=2920): 960
Theoretical Optimum: 930

AMCC Global View: 985

SQNO: 1209

Figure 4. Learning process for the notorious ft10 problem.

• a purely random dispatcher

• three basic local view dispatching rules (LPT, SPT, and FIFO)

• two more sophisticated global view dispatching rules (SQNOand AMCC)

• our adaptive agent-based approach to reactive scheduling

• the theoretical optimum (Cmax,opt = 930)

Figure 4 visualizes the learning progress for the ft10 instance. The best
solution found by the learning approach was discovered after 2920 repeated
processings ofSL (see Figure 4). The makespanCmax = 960 of the corre-
sponding schedule thus has a relative error of 3.2% compared to the optimal
schedule. We note that we have detected the optimal learnt dispatching policy
(represented by the agents’ neural networks representing their Q functions) by
means of the policy screening method described in Section 3.3.

5.3 Benchmark Results

Next, we studied the effectiveness of our agent-based scheduling approach
for a large number of different-sized benchmark problems, ranging from job-
shops with 5 resources and 10 jobs to 15 resources and 20 jobs.We allowed
the agents to sample training data tuples in anε-greedy manner for maximally
25000 processings ofSL with SL = SS and permitted intermediate calls to
NFQ with optimistic assumption (N= 20 iterations of the Q iteration loop) in
order to reach the vicinity of a near-optimal Q function as quickly as possible.

Name & Size 1) Simple DPRs 2) Cmplx.DPRs3) Central.Methods4) AdaptiveRemain.
FIFO LPT SPTSQNO AMCCGRASP OptimumRL Agents Err.(%)

ft6 6× 6 65 77 88 73 55 55 55 57 3.64
ft10 10× 10 1184 1295 1074 1209 985 938 930 960 3.23
ft20 5× 20 1645 1631 1267 1476 1338 1169 1165 1235 6.01
abz5 10× 10 1467 1586 1352 1397 1318 1238 1234 1293 4.78
abz6 10× 10 1045 1207 1097 1124 985 947 943 981 4.03
abz7 15× 20 803 903 849 823 753 723 667 723 8.40
abz8 15× 20 877 949 929 842 783 729 670 741 10.60
abz9 15× 20 946 976 887 865 777 758 691 779 12.74

Avg. abz 1033.6 1124.2 1022.81010.2 923.2 879.0 841.0 903.4 8.11
la01 5× 10 772 822 751 988 666 666 666 666 0.00
la02 5× 10 830 990 821 841 694 655 655 687 4.89
la03 5× 10 755 825 672 770 735 604 597 648 8.54
la04 5× 10 695 818 711 668 679 590 590 611 3.56
la05 5× 10 610 693 610 671 593 593 593 593 0.00
Avg. la5×10 732.4 829.6 713.0787.6 673.4 621.6 620.2 641.0 3.40

la06 5× 15 926 1125 1200 1097 926 926 926 926 0.00
la07 5× 15 1088 1069 1034 1052 984 890 890 890 0.00
la08 5× 15 980 1035 942 1058 873 863 863 863 0.00
la09 5× 15 1018 1183 1045 1069 986 951 951 951 0.00
la10 5× 15 1006 1132 1049 1051 1009 958 958 958 0.00
Avg. la5×15 1003.6 1108.8 1054.01065.4 955.6 917.6 917.6 917.6 0.00

la11 5× 20 1272 1467 1473 1515 1239 1222 1222 1222 0.00
la12 5× 20 1039 1240 1203 1202 1039 1039 1039 1039 0.00
la13 5× 20 1199 1230 1275 1314 1161 1150 1150 1150 0.00
la14 5× 20 1292 1434 1427 1438 1305 1292 1292 1292 0.00
la15 5× 20 1587 1612 1339 1400 1369 1207 1207 1207 0.00
Avg. la5×20 1277.8 1396.6 1343.41373.8 1222.61182.0 1182 1182.0 0.00

la16 10× 10 1180 1229 1156 1208 979 946 945 996 5.40
la17 10× 10 943 1082 924 955 800 784 784 793 1.15
la18 10× 10 1049 1114 981 1111 916 848 848 890 4.95
la19 10× 10 983 1062 940 1069 846 842 842 875 3.92
la20 10× 10 1272 1272 1000 1230 930 907 902 941 4.32
Avg. la10×10 1085.4 1151.8 1000.21114.6 894.2 865.4 864.2 899.0 3.95

orb1 10× 10 1368 1410 1478 1355 1213 1070 1059 1154 8.97
orb2 10× 10 1007 1293 1175 1038 924 889 888 931 4.84
orb3 10× 10 1405 1430 1179 1378 1113 1021 1005 1095 8.96
orb4 10× 10 1325 1415 1236 1362 1108 1031 1005 1068 6.27
orb5 10× 10 1155 1099 1152 1122 924 891 887 976 10.03
orb6 10× 10 1330 1474 1190 1292 1107 1013 1010 1064 5.35
orb7 10× 10 475 470 504 473 440 397 397 424 6.80
orb8 10× 10 1225 1176 1107 1092 950 909 899 956 6.34
orb9 10× 10 1189 1286 1262 1358 1015 945 934 996 6.64

Avg. orb 1164.3 1226.1 1142.61163.3 977.1 907.3 898.2 962.7 7.13
Overall Avg. 1054.2 1137.6 1037.31080.7 932.9 882.6 874.6 908.9 4.17

Table 1. Learning results on OR job-shop benchmark problems.

In Table 1, we compare the capabilities of four different groups of algo-
rithms to the theoretical optimum. Simple dispatching priority rules (group
1) consider only the local situation at the resource for which they make a dis-
patching decision. The same holds for our adaptive agents approach (4) whose
results are given in the table’s last two columns. Moreover,two examples of
more sophisticated heuristic rules are considered (group 2) that are not subject
to that local view restriction.

Group 3 comprises centralized methods. Here, an instance ofa meta-
heuristic as well as the best known solution (which for the considered bench-
marks coincides with the optimal solution), as it may be found by a predic-
tive scheduling algorithm like a branch-and-bound or disjunctive programming
method, are provided. Of course, there exists a large variety of centralized
methods such as heuristic search procedures or evolutionary approaches to
tackle JSSPs. All those algorithms work under superior preconditions com-
pared to local dispatchers because they have full problem knowledge of the
task. Accordingly, a comparison of centralized methods’ results to the results
of our adaptive agent-based approach is not very meaningful. For the sake of
completeness, however, we have included the performance ofa single repre-
sentative (GRASP, [8]) of those methods in Table 1. Note thatthe “Remaining
Error” of our learning approach is also calculated with respect to the theoretical
optimum.

 100

 105

 110

 115

 120

 125

 130

 135

 140

5x10 (la1-5) 5x15 (la6-10) 5x20 (la11-15) 10x10 (la16-20) 10x10 (orb1-9) 15x20 (abz7-9)

A
ve

ra
ge

 M
ak

es
pa

n
 R

el
at

iv
e

T
o

O
pt

im
al

 M
ak

es
pa

n
(%

)

Name of Benchmark Set and Problem Size (#resources x #jobs)

103.4

100.0 100.0

104.0
107.2

110.6

FIFO Rule
LPT Rule

SPT Rule
SQNO Rule

AMCC Rule
RL Agents

Optimum

Figure 5. For different sets of benchmark problems with equal size, this figurevisual-
izes the average performance of different approaches in terms aiming at a minimized
makespan of the resulting schedules. The results are given relative to the makespan
of the optimal schedule (100%, black data series). Data series colored in light gray
correspond to static rules having local state information only, whereas medium gray-
colored ones are not subject to that restriction. The data series termed “Adaptive” cor-
responds to the learning approach we have suggested (performance reported belongs
to the makespan achieved whentraining for single benchmark problems), which is
restricted to the local view, too.

For the 5× 15 (la6-10) and 5× 20 (la11-15) benchmark problems, the op-
timal solution can be found by our learning approach in all cases, and for the
5×10 (la1-5), 10×10 (la16-20, orb1-9) sets, only a small relative error of less
than ten percent compared to the optimal makespan remains (3.4/4.0/7.1%).
As to be expected, dispatching rules, even those disposing of more than just lo-
cal state information (like AMCC or SQNO), are clearly outperformed. For the
mixed abz benchmarks involving also instances with 15 resources and 20 jobs
per problem, the average relative error increases to 8.1%, yet the rule-based
schedulers are surpassed, still. For a better illustrationof the main findings we
also have grouped the results on individual benchmark problems into classes
with respect to the numbers of resources and jobs to be processed (Figure 5).

5.4 Generalization to Unknown Problems

Some analytical search procedure (like a tabu search) finds asuitable sched-
ule for one specific problem instance. By contrast, our learning approach –
after having learned for a set of one or more training problems – will have
yielded dispatching policies that are generally applicable. To empirically in-
vestigate the generalization capabilities of the learned dispatching policies, we
designed a further experiment. Here, the learning agents were presented three
sets of scheduling problems

• the training setSL for the learning phase,

• the screening setSS for intermediate policy screening rollouts (as be-
fore, we setSL = SS),

• and an application setSA containing independent problem instances to
evaluate the quality of the learning results on problem instances the
agents have not seen before (SL ∩ SA = ∅).

Of course, it would be unrealistic to expect the dispatchingpolicies that
were trained using, for instance, a training set with 5× 15 problems, to bring
about reasonable scheduling decisions for very different problems (e.g. for
10× 10 benchmarks). Therefore, we have conducted experiments for bench-
mark suitesS consisting of problems with identical sizes that were provided
by the same authors. From an applicatory point of view, this assumption is
appropriate and purposeful, because it reflects the requirements of a real plant
where usually variations in the scheduling tasks to be solved occur accord-
ing to some scheme and depending on the plant layout, but not in an entirely
arbitrary manner.

Benchmark Suite Name S5×15
la S10×10

orb
Problem Instances la06, . . . , la10 orb1, . . . , orb9

Local View FIFO 1003.6 9.4% 1164.3 29.6%
LPT 1108.8 20.9%1226.1 36.5%
SPT 1054.0 14.9%1142.6 27.1%

Global View AMCC 955.6 4.2% 977.1 8.8%
SQNO 1065.4 16.1%1163.3 29.5%

RL Agents (local view) 951.6 3.7% 1065.1 18.6%
with Cross-Validation 5-fold 3-fold
Avg. Optimum (Cavg

max,opt) 917.6 898.2

Table 2. Generalization Capabilities: During its application phase, the learned
dispatching policies are used for problems not covered during training. Average
makespan and remaining errors relative to the optimum are provided.

Moreover, since|S| is rather small under these premises, we performed
ν-fold cross-validation onS, i.e. we disjointedS into SL andSA, trained on
SL and assessed the performance of the learning results onSA, and finally,
repeated that procedureν times to form average values.

In Table 2 we summarize the learning results for a benchmark suite of
5× 15 problemsS5×15

la = {la06, . . . , la10} as well as for the more intricate
suite of 10× 10 problemsS10×10

orb = {orb1, . . . , orb9}. We emphasize that
the average makespan values reported for our adaptive RL agents correspond
to their performance on independent test problem instances, i.e. to schedul-
ing scenarios that were not included in the respective training setsSL dur-
ing cross-validation. From that numbers it is obvious that all static local
view dispatchers, to which the results of our approach must naturally be com-
pared, are clearly outperformed. Interestingly, for theS5×15

la problem suite not
just dispatching rules working under the same conditions asour adaptive RL
agents, but even the AMCC rule is beaten, which exhaustivelybenefits from
its global view on the plant. For theS10×10

orb suite, AMCC brings about bet-
ter performance than our learning approach which is logicalfor two reasons.
First, AMCC works under superior conditions compared to ourlearning ap-
proach as it is allowed to make use of global state information (information
about the situation of other resources). Second, when training our RL agents
for single 10× 10 problems (see Table 1), the resultant average performance
(Cavg,orb

max = 962.3) was only slightly better than the performance of the AMCC
rule. Consequently, it is logical to expect that the AMCC rule outperforms our
agents when their learned dispatching policies are appliedto problems, they
have never seen before.

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

20001700140011008005004003002001000

A
vg

. M
ak

es
pa

n
on

 L
A

06
-1

0,

 5
-f

ol
d

cr
os

s-
va

lid
at

ed

Learning Episodes

RL Agents (Appl.Phase): 951.6

Optimum: 917.6
RL Agents (Learn.)

FIFO:1004

LPT:1109

SPT:1054
SQNO:1065

AMCC:956

Learning Phase
Application Phase

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

20k17k14k11k8k5k1500125010007505002500

A
vg

. M
ak

es
pa

n
on

 O
R

B
1-

9,

 3
-f

ol
d

cr
os

s-
va

lid
at

ed

Learning Episodes

RL Agents (Appl.Phase): 1065.1

RL Agents (Learn.Phase): 1015.7

Optimum: 898.2

FIFO:1164,SQNO:1163

LPT:1226

SPT:1142

AMCC:977

Learning Phase
Application Phase

Figure 6. Using ν-fold cross-validation, the adaptive agents’ dispatchingpolicies
are trained on theS5×15

la (top) andS10×10
orb (bottom) benchmark suites, respectively,

and, during the application phase, are evaluated on independent test scenarios. At the
chart’s right hand side, the average makespans achieved by several static dispatching
rules are given for comparison.

Figure 6 illustrates the corresponding learning progress over time (up to
20000 training episodes) for this experiment. For the 5× 15 problemsS5×15

la ,
our learning approach succeeds in entirely capturing the characteristics of the
training problems inSL during training: When a plant utilizing the dispatch-
ing policies learned processes the problems fromSL, the theoretic optimum
is almost reached, i.e. schedule decisions resulting in minimal makespan are
yielded. More importantly, even on the independent probleminstances from
SA that were not experienced during training, excellent results are achieved:
With an average makespan of 951.6 during the application phase, the acquired
dispatching policies outperform not just dispatching rules that work under the
same basic conditions as our learning agents do, but even those that have full
state information (like AMCC). Furthermore, the gap in performance com-
pared to the theoretically best schedules is only 3.7% in terms of averageCmax.

The local dispatching rules obtained for theS10×10
orb benchmark suite fea-

ture a remaining relative error of 18.6% compared to the theoretic optimum
in terms of minimal makespan. Although for these more intricate benchmark

problems the results are less impressive, they allow us to draw two empiric con-
clusions: First, traditional dispatching priority rules that solely employ local
state information at the regarding the respective resource(just as our learning
approach does) are clearly outperformed. And, second, the resulting dispatch-
ing policies acquired during training feature generalization capabilities and,
hence, can effectively be applied to similar, yet unknown, scheduling problem
instances.

5.5 Discussion

Our approach to model the scheduling task as a sequential decision prob-
lem and to make reactive scheduling decisions features the disadvantage that
currently the resulting schedules correspond to solutionsfrom the set of non-
delay schedules, only: If a resource has finished processingone operation and
has at least one job waiting, the dispatching agent immediately continues pro-
cessing by picking one of the waiting jobs. Our approach doesnot allow a
resource to remain idle, if there is more work to be done.

From scheduling theory, however, it is well-known that for certain schedul-
ing problem instances the optimal schedule may very well be adelay sched-
ule. In fact, the following subset inclusion holds for threesub-classes of non-
preemptive schedules

Snondelay(Sactive(Ssemiactive(S (12)

whereS denotes the set of all possible schedules [27]. The optimal schedule
for a particular problem, however, is always withinSactive, but not necessarily
within Snondelay.

We expect that, in future work, we will be able to further boost the per-
formance of our learning approach. Currently, our adaptiveagents can gen-
erate schedules of the classSn of non-delayschedules exclusively: As a con-
sequence, our approach is currently able to produce near-optimal schedules
from Sn and may miss the best schedule possible, though in many casesthe
optimum is indeed found (cf. Figure 5). Yet, an extension of our learning
framework towards delay schedules depicts an important andpromising issue
for future work.

6 Conclusion

Job-shop problems are NP-hard. We have pursued an alternative approach
to scheduling where each resource is assigned a decision-making agent that

decides which job to process next, based on its partial view on the production
plant. We use neural reinforcement learning to enable the agents to learn a
dispatching policy from repeated interaction with the plant and to adapt their
behavior to the environment. This way, we obtain a reactive scheduling sys-
tem, where the final schedule is not calculated beforehand, viz before execu-
tion time, where online dispatching decisions are made, andwhere the local
dispatching policies are aligned with the global optimization goal. So, not just
the adaptation of the agents’ behavior during learning is decentralized, but also
decision-making during application proceeds without a centralized control.

Although it is possible to adopt a global view on a given scheduling prob-
lem and model it as a single MDP, we decided to interpret and solve it as
a multi-agent learning problem using our learning approachrelying on rein-
forcement learning. On the one hand, we therefore have to cope with a problem
complication due to independently learning agents. But, onthe other hand, we
derive the benefit of being enabled to perform reactive scheduling including
the capability to react to unforeseen events. Furthermore,a decentralized view
on a scheduling task is of higher relevance to practice sincea central control
cannot always be instantiated.

In addition to introducing the integral concepts and modelling specifics
of the multi-agent reinforcement learning framework proposed, we also pre-
sented a new reinforcement learning method for deterministic multi-agent en-
vironments (OA-NFQ). This algorithm realizes a combination of data-efficient
batch-mode reinforcement learning in conjunction with neural value function
approximation, and the utilization of an optimistic inter-agent coordination.

Despite the numerous approximations that we have made, the empirical
part of this paper contains several convincing results for classical Operations
Research benchmarks. Our experiments for such large-scalebenchmark prob-
lems lets us come up with the conclusion that problems of current standards
of difficulty can very well be effectively solved by the learning method we
suggest: The dispatching policies our learning agents acquire clearly surpass
traditional dispatching rules and, in some cases, are able to reach the theoreti-
cally optimal solution. Notwithstanding the inherent difficulties in facing par-
tial state observability and agent-independent learning,the dispatching policies
acquired do also generalize to unknown situations without retraining, i.e. they
are adequate for similar scheduling problems not covered during the learning
phase.

References

[1] Adams J., Balas E., Zawack D., 1988,The Shifting Bottleneck Procedure
for Job Shop Scheduling, Management Science, Vol. 34, pp. 391–401.

[2] Applegate D., Cook W., 1991,A Computational Study of the Job-Shop
Scheduling Problem, ORSA Journal on Computing, Vol. 3, pp. 149–156.

[3] Bean J., 1994,Genetics and Random Keys for Sequencing and Optimiza-
tion, ORSA Journal of Computing, Vol. 6, pp. 154–160.

[4] Beasley J., 2005,OR-Library,
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html.

[5] Bertsekas D., Homer M., Logan D., Patek S., Sandell N., 2000, Missile
Defense and Interceptor Allocation by Neuro-Dynamic Programming,
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 30, pp. 42–
51.

[6] Bertsekas D., Tsitsiklis J., 1996,Neuro Dynamic Programming, Athena
Scientific, Belmont, USA.

[7] Bhaskaran K., Pinedo M.,Dispatching, 1977, In: Salvendy G. (Ed.),
Handbook of Industrial Engineering, John Wiley, New York, USA, pp.
2184–2198.

[8] Binato S., Hery W., Loewenstern D., Resende M.,A GRASP for Job Shop
Scheduling, 2001, In: Hansen P., Ribeiro C. (Ed.), Essays and Surveys in
Metaheuristics, Kluwer Academic Publishers, New York, USA, pp. 177–
293.

[9] Blazewicz J., Ecker K., Schmidt G., Weglarz J., 1993,Scheduling in
Computer and Manufacturing Systems, Springer, Berlin, Germany.

[10] Boutilier C., 1999,Sequential Optimality and Coordination in Multia-
gent Systems, Proceedings of IJCAI’99, Stockholm, Sweden, pp. 478–
485.

[11] Claus C., Boutilier C., 1998,The Dynamics of Reinforcement Learning in
Cooperative Multiagent Systems, Proceedings of AAAI’98, Menlo Park,
USA, pp. 746–752.

[12] Ernst D., Geurts P., Wehenkel L., 2005,Tree-Based Batch Mode Rein-
forcement Learning, Journal of Machine Learning Research, Vol. 6, pp.
504–556.

[13] Gabel T., Riedmiller M., 2006,Reducing Policy Degradation in Neuro-
Dynamic Programming, Proceedings of ESANN’06, Bruges, Belgium,
pp. 653–658.

[14] Gordon G.,Stable Function Approximation in Dynamic Programming,
1995, Proceedings of ICML’95, San Francisco, USA, pp. 261–268.

[15] Hornick K., Stinchcombe M., White H., 1989,Multilayer Feedforward
Networks Are Universal Approximators, Neural Networks, Vol. 2, pp.
359–366.

[16] Joslin D., Clements D., 1999,Squeaky Wheel Optimization, Journal of
Artificial Intelligence Research, Vol. 10, pp. 353–373.

[17] Lauer M., Riedmiller M., 2000,An Algorithm for Distributed Rein-
forcement Learning in Cooperative Multi-Agent Systems, Proceedings of
ICML’00, Stanford, USA, pp. 535–542.

[18] Lawrence S., 1984,Supplement to Resource Constrained Project
Scheduling: An Experimental Investigation of Heuristic Scheduling Tech-
niques, Techn. Report, Carnegie Mellon University, Pittsburgh, USA.

[19] Mahadevan S., Marchalleck N., Das T., Gosavi A., 1997,Self-Improving
Factory Simulation Using Continuous-Time Average-RewardReinforce-
ment Learning, Proceedings of ICML’97, Nashville, USA, pp. 202–210.

[20] Mascis A., Pacciarelli D., 2002,Job-Shop Scheduling with Blocking
and No-Wait Constraints, European Journal of Operational Research,
Vol. 143, pp. 498–517.

[21] Munos R., 2003,Error Bounds for Approximate Policy Iteration, Pro-
ceedings of ICML’03, Washington, USA, pp. 560–567.

[22] Muth J. and Thompson G. (Ed.), 1963,Industrial Scheduling. Kluwer
Academic Publishers, Dordrecht, The Netherlands.

[23] Nowicki E., Smutnicki C., 1996,A Fast Taboo Search Algorithm for the
Job Shop Problem, Management Science, Vol. 42, pp. 797–813.

[24] Ombuki B., Ventresca M., 2004,Local Search Genetic Algorithms for the
Job Shop Scheduling Problem, Applied Intelligence, Vol. 21, pp. 99–109.

[25] Ow P., Morton T., 1988,Filtered Beam Search in Scheduling, Interna-
tional Journal of Production Research, Vol. 26, pp. 297–307.

[26] Panwalkar S., Iskander W., 1977,A Survey of Scheduling Rules, Opera-
tions Research, Vol. 25, pp. 45–61.

[27] Pinedo M., 2002,Scheduling. Theory, Algorithms, and Systems. Prentice
Hall, USA.

[28] Pinson E.,The Job Shop Scheduling Problem: A Concise Survey and
Some Recent Developments, 1995, In: Chretienne P., Coffman E.,
Lenstra J. (Ed.),Scheduling Theory and Applications, pp. 177–293.

[29] Puterman M., 2005,Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, Wiley-Interscience, USA.

[30] Riedmiller M., 2005,Neural Fitted Q Iteration – First Experiences with a
Data Efficient Neural Reinforcement Learning Method, Machine Learn-
ing: ECML 2005, Porto, Portugal, pp. 317–328.

[31] Riedmiller M., Braun H., 1993,A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm, Proceedings of
ICNN’93, San Francisco, USA, pp. 586–591.

[32] Riedmiller S., Riedmiller M., 1999,A Neural Reinforcement Learning
Approach to Learn Local Dispatching Policies in ProductionScheduling,
Proceedings of IJCAI’99, Stockholm, Sweden, pp. 764–771.

[33] Sutton R., Barto A., 1998,Reinforcement Learning. An Introduction,
MIT Press/A Bradford Book, Cambridge, USA.

[34] van Laarhoven P., Aarts E., Lenstra J., 1992,Job Shop Scheduling by
Simulated Annealing, Operations Research, Vol. 40, pp. 113–125.

[35] Wang G., Mahadevan S., 1999,Hierarchical Optimization of Policy-
Coupled Semi-Markov Decision Processes, Proceedings of ICML’99,
San Francisco, USA, pp. 464–473.

[36] Watkins C., Dayan P., 1992,Technical Note Q-Learning, Machine Learn-
ing, Vol. 8, pp. 279–292.

[37] Zeng D., Sycara K., 1995,Using Case-Based Reasoning as a Reinforce-
ment Learning Framework for Optimization with Changing Criteria, Pro-
ceedings of ICTAI’95, Washington, USA, pp. 56–62.

[38] Zhang W., Dietterich T., 1995,A Reinforcement Learning Approach to
Job-Shop Scheduling, Proceedings of IJCAI’95, Montreal, Canada, pp.
1114–1120.

