
Learning a Partial Behavior
for a Competitive Robotic Soccer Agent

Thomas Gabel, Martin Riedmiller

Neuroinformatics Group, University of Osnabrück, 49069 Osnabrück

Robotic soccer is a highly competitive domain. Accordingly, the use of learnt behaviors in this application field pre-
sumes not only learning algorithms that are known to converge and produce stable results, but also imposes the wish
for obtaining optimal or at least near-optimal behaviors, even when working within high-dimensional and continuous
state/action spaces. This paper deals with the continuous amelioration of adaptive soccer playing skills in robotic soccer
simulation, documenting and presenting results of our hunt for optimal policies. We show that not too much effort is
necessary to realize straightforward Reinforcement Learning algorithms in this domain, but that a heavy load of work is
required when tweaking them towards competitiveness.

1 Introduction

One of the main reasons for the attractiveness of Reinforce-
ment Learning (RL) approaches is their applicability in un-
known environments with unidentified dynamics, where an
agent acquires its behavior by repeated interaction with the
environment on the basis of success and failure signals. Nu-
merous applications of RL techniques in various scenarios
have shown that RL works and can be employed for tasks
where finding analytical solutions represents a rather difficult
and cumbersome challenge.

In practice, it is often impossible to meet all presump-
tions for an RL algorithm to converge, especially when trying
to learn a policy for a more complex task with a continuous
state/action space where the use of a function approxima-
tor to represent the value function is indispensable. The use
of a function approximator, however, induces some noise,
i.e. some generalization error on its output predictions. That
noise may, when greedily exploiting a state or state-action
value function, lead to an overestimation of the successive
state’s value and hence prevent the finding of an optimal pol-
icy. Our investigations to be presented in the scope of this
paper are driven by a goal-oriented search for optimal poli-
cies. The motivation behind this works stems from a highly
competitive application scenario, robotic soccer simulation,
where the availability of optimal or at least near-optimal poli-
cies may decide between victory or defeat. The main mes-
sage we want to convey with this paper is that state of the
art RL algorithms can be tuned to work in combination with
a function approximator in highly complex domains, but that
yielding optimal policies still represents a laborious problem.

In Section 2 we motivate our work and present the inter-
cept ball task, one of the most important fundamental skills
required in robotic soccer simulation, which we will use as
a benchmark throughout this paper. Section 3 discusses ex-
isting (adaptive as well as non-adaptive) algorithms to solve
that problem. In Section 4 we report on our steps towards a
learnt, near-optimal policy for ball interception. In so doing,
we focus on the need for function approximation, introduce

a number of techniques to improve the learning algorithm,
and also point out to inherent difficulties a learning agent
faces in the soccer simulation environment.

2 Brainstormers Approach

During the past years, robotic soccer has turned out to be
an excellent test-bed for machine learning and, in partic-
ular, for Reinforcement Learning tasks. RoboCup is a re-
search initiative to advance AI and intelligent robotics re-
search. Annually, there are championship tournaments in
several leagues – ranging from real soccer-playing robots to
simulated ones. The context for this paper is RoboCup’s 2D
Simulation League, where two teams of simulated soccer-
playing agents compete against one another using the Soccer
Server [10], a real-time soccer simulation system.

With our competition team, Brainstormers, we have
been participating in the RoboCup [15] championship tour-
naments for several years, whereupon our main research ef-
fort is to realize a growing part of the soccer-playing agent’s
behavior by machine learning techniques. The complexity of
the soccer domain, however, makes the learning of optimal
policies a challenging task. Often, a skillfully hand-crafted
solution can be superior to a learnt one that is implemented
as a proof of concept only. Consequently, having achieved a
number of successes at international robotic soccer compe-
titions1, we aim at learning competitive behavior policies.

Several research groups have dealt with the task of learn-
ing parts of a soccer-playing agent’s behavior autonomously
[7, 8]. The focus of this paper is on learning a soccer player’s
basic behaviors, its so-called skills. One of the most impor-
tant fundamental capabilities of a soccer player is to inter-
cept a running ball as quickly as possible. Since a match’s
course of action can be influenced significantly, if a team is
in ball possession, this skill is crucial for being competitive.

1e.g., multiple World Vice Champion titles and World Cham-

pion at RoboCup 2005 in Osaka

Intercept Ball Task

The start situation for the task of ball interception is repre-
sented by a player moving at velocity ~vp, and the ball at a
distance of dbp moving at velocity ~vb. Further, the relative
angle between the player’s orientation and the ball is denoted
as αbp. The environment determines that both the player’s
and ball’s velocity decay at a certain rate from one time step
to the next. The player is permitted to decide for one action
per time step sending it to the Soccer Server. To approach
and intercept the ball the following actions are of relevance:
Turn actions, turn(x), with x ∈ (−180

�

, 180
�

], change the
player’s orientation by an angle x. Dash actions, dash(y),
with y ∈ [−100, 100], generate an acceleration along the
player’s current orientation. The action’s parameter y spec-
ifies the relative dash power.

The player’s task is to find a sequence of actions which
enables him to intercept the ball as quickly as possible: The
agent must approach the ball so that it is within the player’s
kickable area – a region around the player in which he has
control over the ball. At a first glance the solution to the
task at hand appears trivial: Simply compute the best in-
terception point, use a turn command to aim into that di-
rection, and dash at maximum speed towards that point.
Unfortunately, the choice of the word “simply” is inappropri-
ate. On the one hand, the Soccer Server’s simulation is time
discrete so a closed form solution for computing the intercep-
tion point is not feasible without compromise in abstracting
the environment. On the other hand, one may imitate the
server and simulate the environment for a number of time
steps ahead. However, this is computationally costly and
does not rid us of the crucial question under which circum-
stances turn actions are to be preferred over dashes. Further,
the simulation environment is superposed with a certain level
of noise created by the Soccer Server so that a running ball
in general does not move along a line.

The crucial factor for intercepting a ball really quickly
is the correct decision for turn actions. However, marginal
deviations in the turn angle may make further turns neces-
sary, which are “expensive” in terms of interception time as
no dash action can be performed concurrently and hence the
player slows down. Figure 1 (left) illustrates the problem: At
t = 0 the player is stationary with a body orientation towards
the right, while the ball moves with |~vb| = 1.5. Obviously,
the first action required is a turn(α). The figure shows that
the ball can be intercepted within 3 time steps when choos-
ing α ∈ [27

�

, 34.5
�

]. Using turn angles beyond that interval,
4 or more cycles are needed. In the figure’s right part a
more extreme situation is shown: At t = 0 the ball starts
with |~vb| = 2.7. The ball position at t = 3 is the same as
before, so with α ∈ [27

�

, 34.5
�

] the ball might have been
intercepted within 3 steps, too. For an initial turn(α) with
α ∈ (34.5

�

, 65
�

] the ball would pass the player and at least
5 steps would be required for ball interception. Choosing
α beyond that interval and within (65

�

, 81
�

] (like the agent
in Figure 1 which decides for α = 70

�

) it is again possible
to intercept the ball faster, i.e. within 4 time steps. Dis-
continuities and non-monotonies like the one described exist
throughout the entire space of possible intercept starting

situations. So, the particular challenge in solving the inter-
cept problem is represented by a high-dimensional, continu-
ous state space which is covered with discontinuities where
small changes in one of the state variables (e.g. ball veloc-
ity or player orientation) require very different actions to be
chosen by the agent.

Figure 1: Difficulties in Ball Interception

3 Ball Interception Methods

In its first version our team made use of the ball intercep-
tion routine from Carnegie Mellon’s team CMUnited98 [13].
Intending to apply Reinforcement Learning in a competitive
domain like robotic soccer, we soon realized a straightfor-
ward RL approach based on value iteration and state value
function approximation with a neural network. The resulting
behavior, called neuro intercept (NI’02) subsequently, out-
performed the original routine clearly and was employed suc-
cessfully during RoboCup tournaments from 2000 to 2002.

3.1 Numerical Solution Approach

To remain competitive steady improvements to the agents’
implementation are required. This also refers to the task
of ball interception: Other authors have presented very effi-
cient numerical algorithms for computing the time t it takes
a player to intercept a moving ball [12]. They show that
there is no closed form for calculating t and therefore make
use of Newton’s method to numerically find a near-optimal
t. However, their algorithm makes two simplifying assump-
tions about the soccer simulation environment. First, it is
presumed that players run at a fixed (maximal) velocity. In
practice, players need to accelerate until reaching their max-
imal speed for a number of time steps and may slow down
when, for example, turning. Second, time is assumed to be
continuous – which it is not in this environment as the Soc-
cer Server’s simulation is done in discrete time steps. Due
to these assumptions the algorithm’s prediction for intercept
times/points is a near-optimal approximation only.

3.2 Model-Based Solution Approach

The time-discrete dynamics of the soccer simulation environ-
ment are known [10]. Therefore, it is possible for a player

to predict the next state he will find himself in when having
taken a specific action. Based on that knowledge we real-
ized a computationally intensive interception algorithm that
simulates the environment, models the results of the player’s
actions and in so doing finds the optimal interception point
(under the assumption the Soccer Server adds no noise to
ball and player movements). This hand-coded technique was
integrated into our competition team in 2003, replacing al-
gorithm NI’02 and outperforming it by significantly faster
ball interception sequences (see also Section 3.3).

As can be seen in Algorithm 1 the main load of this algo-
rithm lies in step 2b: Here, the player’s subsequent decisions
as determined by steps 3 and 4 are modelled for a num-
ber of time steps ahead to calculate the minimal number of
steps required to intercept the ball. If the environment is
noise-free, i.e. all ball and player movements are accurately
predictable, the intercept point ~pb can be forecast exactly
(parameter ε becomes redundant): The player will head into
the optimal intercept direction after its first action. In a noisy
environment ε must be set to an appropriate value trading
off between exact heading towards the intercept point com-
puted and taking as few additional turn actions as possible.

1. set t := 0
2. do

(a) set t := t + 1
(b) model own behavior and ball movement

for maximally t time steps
while ball cannot be intercepted in t steps

3. set ~pb := ball’s position in t time steps
set ~pp := player’s current position
set ~αp := current player orientation
set ~β := angle between ~pb − ~pp and x-axis

4. if |αp − β| > ε
then TURN towards β
else DASH at maximal speed

Algorithm 1: Model-Based (MB) Ball Interception

3.3 Reinforcement Learning Approach

We now want to investigate the use of RL for the ball inter-
ception problem in more detail, using the accurate solutions
provided by algorithm MB as a benchmark.

An RL problem is usually formalized as a Markov Deci-
sion Process [1], where an MDP is a 4-tuple [S, A, r, p] with
S as the set of states, A the set of actions, and r : S×A → R

the function of immediate rewards r(s, a) that arise when
taking action a in state s. Function p : S × A × S → [0, 1]
depicts a probability distribution p(s, a, s′) that tells how
likely it is to end up in state s′ when performing action
a in state s. The intercept task’s formalization as an
MDP comprises a continuous, 6-dimensional state space
S = {s = (vb,x, vb,y , vp,x, vp,y , dbp, αbp)} where ~vb is the
ball’s and ~vp the player’s velocity, dbp the distance and αbp

the relative angle between ball and player. Actions for the
player are turn and dash commands. After successful inter-
ception, the player gets a positive reward, to create time-
optimal behavior each action incurs a little negative reward.

The agent needs to differentiate between the desirabil-
ity of successor states, in order to decide for a good ac-
tion. A common way to rank states is by computing a
state value function V π : S → R which estimates the
future rewards that can be expected when starting in a
specific state s and taking actions determined by policy
π : S → A, i.e. π(s), from then on. Thus, it holds
V π(s) = E[

P

∞

t=0
r(st, π(st)|s0 = s)], where E[·] denotes

the expected value. If we are in possession of an “optimal”
state value function V ?, it is easy to infer the correspond-
ing optimal behavior policy by exploiting that value func-
tion greedily according to π?(s) := arg maxa∈A{r(s, a) +
P

s∈S
p(s, a, s′) · V ?(s′)}.

Temporal difference (TD) methods comprise a set of
RL algorithms that incrementally update state value func-
tions V (s) after each transition (from state s to s′) the
agent has gone through. This is particularly useful when
learning along trajectories (s0, s1, . . . , sN) – as we do here
– starting in some state s0 and ending up in some termi-
nal state sN ∈ G. So, learning can be performed online,
i.e. the processes of collecting (simulated) experience2 and
learning the value function run in parallel. In this work
we update the value function’s estimates according to the
TD(1) update rule [14], where the new estimate for V (sk)
is calculated as V (sk) := (1 − α) · V (sk) + α · ret(sk)
with ret(sk) =

PN

j=k
r(sk, π(sk)) indicating the summed

rewards following state sk and α as a decaying learning rate
(see Algorithm 2).

1. initialize value function V arbitrarily, let policy π
be given by greedy exploitation of V =: V π

2. repeat
(a) generate random start situation s0

for current episode, set k := 0
(b) while sk /∈ G and k < maxEpisLeng do

i. choose next action ak by exploiting V
greedily according to
ak := argmaxa∈A(r(sk, a) +
P

s′∈S
p(sk, ak, s′) · V (s′))

ii. perform ak, entering state sk+1 and
perceiving immediate reward r(sk, ak)

(c) for all steps sk in episode (s1, . . . , sN)
i. ret(sk) :=

PN−1

j=k
r(sj , aj) + r(sN)

ii. V (sk) := (1− α) · V (sk) + α · ret(sk)
with α as learning rate

until stop criterion becomes true

Algorithm 2: Episode-Based TD(1) Learning

Grid- and Memory-Based Value Functions

For the TD algorithm (Algorithm 2) convergence to the opti-
mum in a finite state and action space is guaranteed, if each
state’s value is updated an infinite number of times and if
the step size parameter α diminishes towards zero at a suit-
able rate. Unfortunately, due to the continuous state space

2Exploration is omitted in Algorithm 2, value function updates

are made for greedy episode parts, only.

Approach 10k 100k 500k

TDgrid5k 70.40 ± 5.34 64.30 ± 5.30 65.21 ± 4.97
TDgrid100k 60.72 ± 1.83 43.30 ±2.24 40.55 ± 1.78
TDgrid600k 68.44 ± 1.97 51.07 ± 1.77 40.19 ± 2.18
TDCB500 46.18 ± 11.2 32.12 ± 5.22 27.93 ± 1.97
TDCB2k 27.88 ± 4.02 22.64 ± 2.16 21.15 ± 1.76

NI ′02 11.06
MB 9.73

Table 1: Interception Using a Grid- and Memory-Based
Function Approximator: The table summarizes the average
number of steps to intercept the ball for a set of 1000 random
start situations (noise-free environment). Columns reflect
the quality of learnt policies after different numbers of learn-
ing episodes experienced. So, the rightmost corresponds to
approximately ten million state value backups.

covered by the intercept task, these prerequisites cannot be
fulfilled here.

Therefore, in a first attempt we discretized the state
space S along each of its dimensions. Choosing different
levels of discretization we reduced S to 5k, 100k and 600k
abstract states distributed nearly equidistantly over S and
applied our TD(1) learning algorithm directly. Compared to
the reference method MB the results obtained were far from
optimal (Table 1, lines 1-3). This is not surprising when
considering the complexity of the underlying problem (cf.
Section 2) and the presumably complex shape of V ?.

Using a specialized memory-based approach which re-
members states and belonging state values explicitly, stores
them in a case base CB, uses suitable routines for case base
management and thus for disassociating from some of its ex-
perience from time to time, and which predicts other state
values using k-nearest neighbor regression, we could achieve
clear improvements [3]. With much less memory consump-
tion (|CB| = 2000) we succeeded in making it half the way
to the optimum. Certainly, the numbers summarized in Ta-
ble 1 (lines 4-5) could even have been improved, if we had
increased the amount of stored experience. Yet, it must
be admitted that then a real-time application of the sys-
tem would have been prohibited since the time required for
nearest-neighbor retrieval/regression grows at least logarith-
mically with the number of examples stored. Nevertheless,
it is worth noting that using this approach average-quality
policies can be generated within very short time, i.e. with a
limited number of training episodes.

4 Learning to Be Competitive

Our investigations in the previous section have shown empir-
ically that an RL implementation with straightforward value
function approximation, using a grid- and memory-based rep-
resentation, are insufficient to obtain a competitive intercept
policy. In the following, we will present an ensemble of three
learning techniques whose interplay enables us to learn a
near-optimal ball interception behavior.

4.1 Batch Mode Learning

In Section 2 we have shown that the underlying task’s state
space is full of regions where small deviations in a chosen
turn angle cause drastic changes in achievable ball intercep-
tion times. In order to be able to generalize and capture the
highly non-linear and partially non-continuous state value
function present for the problem at hand we are in need of
a more powerful function approximation mechanism. Feed-
forward neural networks are known to be capable of approx-
imating arbitrarily closely any function f : S → R that is
continuous on a bounded set S [6]. As we will argue in
the following, the usage of multi-layer perceptrons brings us
nearer to the target on our way to an optimal policy and
allows us to gain insights into the problem structure.

We perform neural network training in batch mode: Re-
peatedly a number of training episodes is simulated and in so
doing a set of representative states S̃ ⊂ S is built up where
for each s ∈ S̃ we have an estimated value V (s) as calcu-
lated by Algorithm 2. So, our learning algorithm is in the
spirit of fitted value iteration [4] and other current off-policy
RL approaches (e.g. [2]).

Let the state value function approximation provided
by the net be denoted as Ṽ (s, w) where w corresponds
to a vector of tunable parameters, i.e. the net’s connec-
tion weights. Then, the actual training means determin-
ing w by solving the least squares optimization problem
minw

P

s∈S̃
(Ṽ (s, w) − V (s))2. For the minimization we

rely on the back-propagation variant RPROP [11].
Making use of a neural function approximator with 24

sigmoidal neurons in its single hidden layer (best among sev-
eral net architectures tested) we got ahead a significant step:
After 500k training episodes – which corresponds to approx-
imately ten million state value backups – the agent using the
learnt intercept policy managed to intercept a ball on aver-
age within 10.57 ± 0.08 cycles (using the same test set as
above), which tops each of our learnt approaches drastically
and also outperforms the old NI’02 algorithm (11.06 steps on
average), but fails to reach the reference algorithm MB by
0.84 time steps necessary on average for a ball interception.

4.2 Adaptive Shaping

Having in mind that the ball intercept behavior gained so
far features clearly improved performance when compared
against the other function approximators tested and know-
ing that an average intercept sequence takes only 0.84 steps
longer than model-based ball interception, the results ob-
tained can be considered as a success and the corresponding
policy as quite competitive. In this respect the aim to catch
up with the optimal performance provided by algorithm MB
represents an even more challenging task.

It is not difficult to figure out, why our learnt behav-
ior needs slightly more steps to approach the ball: It always
manages to intercept the ball successfully, but often does not
find the most “aggressive” way to the ball and executes too
many turns. To combat the problem of “avoidable turns”
we now pursue a reward shaping approach [9]: Turn actions
shall incur higher immediate costs than dashes. In the soc-

cer simulation context this is not intuitive since here turns
are free of charge whereas dash actions reduce the player’s
stamina. Note, that it is not appropriate to simply derogate
turn actions with static immediate costs two or three times
as high as for dashes. Doing that would destabilize and slow
down the learning process as – apart from explorative actions
– almost only dashes would be executed at the beginning
of learning (when V is not yet rudimentarily approximated)
and thus almost no successful episodes would be collected.
Therefore, we make use of an adaptive approach, introduce
a turn cost factor (initialized to 1.0) which is steadily in-
creased during learning each time the quality of the policy
improves. With this adaptive shaping approach we obtained
convincingly good results; average ball interceptions (in the
test scenario from above) take 10.23 ± 0.12 time steps.

4.3 Active Learning

Aiming at a further improvement of the policy learnt, we
tried to find out in which regions of the state space S
the value function is approximated insufficiently and di-
rectly compared the learnt intercept behavior to our refer-
ence method MB for selected parts of S. We recognized
that during learning those regions of S are particularly diffi-
cult to capture in which – at the moment of (optimal) ball
interception – the ball’s and the player’s velocity vectors are
nearly orthogonal and high in velocity. Figure 2 covers a sub-
set S̃ = {vb,x, vb,y , 0, 0, 5, 0|vb,x, vb,y ∈ [

−vb,max

2
,

vb,max

2
]}

of S and shows the performance of the learnt policy versus
model-based interception. Obviously, for balls that approach
the player (vb,x � 0) and do not move directly towards him
(|vb,y | � 0) algorithm MB outperforms the learnt policy ev-
idently: White regions indicate that MB needed less steps
to intercept the ball than the learnt policy, whereas black
regions indicate equal performance.

With this knowledge it is plausible to continue the train-
ing with focus on problematic parts of S using a non-equal
distribution of start situations. Let t denote the number
of time steps required for interception as predicted by algo-
rithm MB, ~vb(t) the ball’s and ~vp(t) the player’s velocity at
the point/moment of interception. Then, the area of the
parallelogram spanned by these vectors

A = sin

„

acos

„

~vb(t) · ~vp(t)

|~vb(t)|| ~vp(t)|

««

|~vb(t)|| ~vp(t)|

is a measure for the difficulty of the interception situation.
With this measure it is straightforward to preferably gener-
ate difficult intercept start situations and learn on the basis
of those. The right part of Figure 2 shows the resulting
distribution of generated situations for the scenario using S̃.

This approach may be easily extended to an active learn-
ing algorithm [5], where the neural network reflects about
its competence, knows about the areas of the input space
where its approximation is insufficient, and tries to improve
its performance especially there. Closing that active learn-
ing loop and enabling fully automatic amelioration is left for
future work. We here report on results only, we obtained
using the manually adapted start situation generation de-
scribed above. After 500k further training episodes with the

bv

5m

player

ball

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

 0

 0.5

 1

 0

 1

 2

 3

 4

 5

-1.5 -1 -0.5 0 0.5 1 1.5

ball x-velocity

-1

-0.5

 0

 0.5

 1

ba
ll

y-
ve

lo
ci

ty

policy compared to

ception using the learnt

Additional steps for ball inter−

the model−based

approach.

Figure 2: Quantitative Difference in Interception Capability
between the Learnt and the Model-Based (MB) Approach for
a Specific Set of Start Situations (left) and Adapted Start
Situation Distribution (right)

optimized start situation generation procedure average in-
terception times could be reduced to 10.01 ± 0.05 for the
evaluation setting used throughout this paper.

4.4 Discussion

Ball interception on the basis of the learnt behavior takes
on average 0.28 steps longer than the theoretical optimum
in a noise-free environment3. So, we are in possession of a
high-performance intercept behavior as this implies that the
agent “loses” only one cycle within about thirty compared
to model-based interception. We also clearly outperformed
our previous learnt intercept routine NI’02.

We have indicated the difficulties for learning in the sim-
ulated soccer environment in Section 2 and shall finish our
hunt for an optimal intercept policy by returning to that
issue: The state space S for the ball interception problem
is crowded with discontinuities. These are regions D ⊂ S
where marginal changes to one of the six state variables of
an s ∈ D cause a very different action to be the optimal one,
e.g. a turn instead of a dash or a turn to a very different an-
gle. In Figure 1 we have considered that problem from an
analytical perspective; Figure 3 illustrates it from a learning
perspective for two different subsets of S.

In Figure 3a) comparatively simple intercept situations
are regarded – the player’s velocity is ~vp =

`

0

0

´

, the ball’s

~vb =
`

0

−1

´

, i.e. the ball is departing from the player start-
ing from different positions (the ball offset x is varied from
−5 to 5 while the ball-player distance along the y-axis is
constant). The chart gives an impression of the state value
function V approximated by the neural net from Section 4.2.
It shows the value of the successive state after having made
a (initial) turn action a subject to the turn angle used when
performing a. Light shades of gray indicate high expected
rewards, dark ones mean low expected rewards. The thick-
lined graph refers to the maximal successor state value for
each x ∈ [−5, 5] and thus denotes the turn angle chosen
when exploiting V greedily. The thin-lined graph reflects
the optimal turn angle computed by algorithm MB (thus

3An additional evaluation has shown, the relative difference

between the learnt policy’s and MB’s performance remains quite

the same when the Soccer Server’s noise is present during learning.

b

0v =()−1

x

3m

−5m 5m

b

0v =()1

...

3m

−5m 5m

...

xa)

b)

−4 −2 0 2 4

−150

−100

−50

 0

 50

 100

 150

F
ir

st
 A

ct
io

n
’s

 T
u
rn

 A
n
g
le

−4 −2 0 2 4

−150

−100

−50

 0

 50

 100

 150

Ball Position Offset x

F
ir

st
 A

ct
io

n
’s

 T
u
rn

 A
n
g
le

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.05

 0.15

 0.25

 0.35

 0.45

 0

 0.1

 0.2

 0.3

 0.4

Model−Based
Learnt

S
u
cc

es
so

r
S

ta
te

’s
 V

al
u
e

Figure 3: Variance in Determination of the Initial Turn Angle
for Ball Interception: (a) for simple interceptions and (b) for
more difficult ones

corresponding to V ?). Obviously, in Figure 3a) both graphs
are hard to differentiate, i.e. the learnt policy is optimal for
this region of S. The situation is, unfortunately, different for
the scenario sketched in Figure 3b), where the player faces
more “difficult” situations with an approaching ball. Here,
the graph for model-based, calculated initial turn angles is
not as continuous as in Figure 3a), instead the turn angle for
the agent’s first action subject to x features numerous points
of discontinuity. Capturing all those discontinuities has not
been accomplished entirely by the neural-net based value
function so that for several situations slightly sub-optimal
turn angles will be preferred, which result in intercept tra-
jectories that last one or more cycles longer than necessary.

5 Conclusion

In this paper we have dealt with a sub-task of robotic soc-
cer simulation, the problem of intercepting moving balls as
quickly as possible, which is one of the most important skills
needed in robotic soccer. Using a Reinforcement Learning
approach, we have aimed at learning a behavior policy for
that task that is competitive, i.e. that nearly reaches the
quality of a hand-coded reference method which is known to
provide optimal results in a noise-free environment.

For high-dimensional, continuous state spaces, as the
one considered in the scope of this work, the application of a
function approximation mechanism is indispensable. There-
fore, we have applied and comparatively evaluated several
techniques for function approximation, from which we se-
lected neural networks to be best suited. Moreover, we suc-
cessfully devised several strategies to enhance the learning
process and to improve neural network training.

The final intercept policy learnt clearly outperforms our
earlier attempts to learn a ball intercept behavior. Further,
it is almost as good as the model-based reference approach,
which is known to provide optimal results in a noise-free en-
vironment. The remaining gap in quality can be put down

to the difficulty in capturing a highly non-continuous state
value function using function approximation. Summing up,
we could show that the behavior policy gained by applying a
Reinforcement Learning approach for the intercept task, can
be almost as competitive as hand-coded and analytic solu-
tions. Moreover, it became clear that a significant amount of
effort must be invested when trying to advance over straight-
forward learn approaches and aiming at gaining near-optimal
policies.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. Neuro Dynamic
Programming. Athena Scientific, Belmont, USA, 1996.

[2] Damien Ernst, Pierre Geurts, and Louis Wehenkel.
Tree-based batch mode reinforcement learning. Journal
of Machine Learning Research, 6:503–556, 2005.

[3] T. Gabel and M. Riedmiller. CBR for State Value Func-
tion Approximation in Reinforcement Learning. In Pro-
ceedings of the Fifth International Conference on Case-
Based Reasoning, Chicago, USA, 2005. Springer.

[4] G. Gordon. Approximate Solutions to Markov Decision
Processes. Ph.D. thesis, Carnegie Mellon University,
1999.

[5] M. Hasenjäger and H. Ritter. Active Learning in Neural
Networks, pages 137–169. Physica-Verlag GmbH, 2002.

[6] K. Hornick, M. Stinchcombe, and H. White. Multi-
layer Feedforward Networks Are Universal Approxima-
tors. Neural Networks, 2:359–366, 1989.

[7] G. Kuhlmann and P. Stone. Progress in Learning 3 vs. 2
Keepaway. In RoboCup-2003: Robot Soccer World Cup
VII, Berlin, 2004. Springer Verlag.

[8] A. Merke and M. Riedmiller. Karlsruhe Brainstromers
– A Reinforcement Learning Way to Robotic Soccer II.
In A. Birk et al., editor, RoboCup2001: Robot Soccer
World Cup. Springer, 2001.

[9] A.Y. Ng, D. Harada, and S.J. Russell. Policy Invariance
Under Reward Transformations: Theory and Applica-
tion to Reward Shaping. In Proceedings of the 16th
ICML, Slovenia, 1999. Morgan Kaufmann.

[10] I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer
Server: A Tool for Research on Multi-Agent Systems.
Applied Artificial Intelligence, 12(2-3):233–250, 1998.

[11] M. Riedmiller and H. Braun. A Direct Adaptive Method
for Faster Backpropagation Learning: The RPROP Al-
gorithm. In Proceedings of the IEEE International Con-
ference on Neural Networks (ICNN), 1993.

[12] F. Stolzenburg, O. Obst, and J. Murray. Qualitative
Velocity and Ball Interception. In Advances in AI, 25th
German Conference on AI, 2002.

[13] P. Stone, P. Riley, and M. Veloso. The CMUnited-
99 Champion Simulator Team. In Veloso, Pagello, and
Kitano, editors, RoboCup-99: Robot Soccer World Cup
III, Berlin. Springer.

[14] R. S. Sutton. Learning to Predict by the Methods of
Temporal Differences. Machine Learning, 3:9–44, 1988.

[15] M. Veloso, T. Balch, and P. Stone. RoboCup 2001:
The Fifth Robotic Soccer World Championships. AI
Magazine, 1(23):55–68, 2002.

