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Abstract—Neural batch reinforcement learning (RL) algo-
rithms have recently shown to be a powerful tool for model-free
reinforcement learning problems. In this paper, we present a
novel learning benchmark from the realm of computer games
and apply a variant of a neural batch RL algorithm in the
scope of this benchmark. Defining the learning problem and
appropriately adjusting all relevant parameters is often a tedious
task for the researcher who implements and investigates some
learning approach. In RL, the suitable choice of the function
c of immediate costs is crucial, and, when utilizing multi-layer
perceptron neural networks for the purpose of value function
approximation, the definition of c must be well aligned with
the specific characteristics of this type of function approximator.
Determining this alignment is especially tricky, when no a priori
knowledge about the task and, hence, about optimal policies
is available. To this end, we propose a simple, but effective
dynamic scaling heuristic that can be seamlessly integrated into
contemporary neural batch RL algorithms. We evaluate the
effectiveness of this heuristic in the context of the well-known
pole swing-up benchmark as well as in the context of the novel
gaming benchmark we are suggesting.

I. INTRODUCTION

Computer games have always been an attractive platform
for evaluating machine learning algorithms. When having a
look back at the two recent decades, one can distinguish two
different main goals that have been pursued in the use of
adaptive and learning agents within games.

On the one hand, there is the field of well-established games,
like card or board games, in the scope of which learning ap-
proaches have been utilized for seeking policies that can keep
up with the strength of human players. Tesauro’s Backgammon
playing program TD-Gammon is an early representative of this
branch of learning for games [1]. More recent examples cover
the games of chess [2] and checkers as well as the intricate
game of Go [3], [4] where learning approaches are still far
away from the human level of playing.

On the other hand, there is the growing area of research-
oriented competitions that are defined to provide a kind of
test-bed for artificial intelligence-based, machine learning and,
particularly, for reinforcement learning (RL) tasks. The RL
Competition held in conjunction with the NIPS conference
series, as well as Google’s recent AI Challenge represent
contemporary examples for research-oriented competitions1.
One of the most prominent examples are the robotic soccer
competitions organized by the RoboCup federation [5]. Here,

1http://www.rl-competition.org/ and http://ai-contest.com/

the overall goal (‘win the game’) is so complex that it
is a natural approach to split the task into several levels
of abstraction and different sub-goals. For instance, several
research groups have dealt with the task of learning parts of
an individual soccer-playing agent’s behavior autonomously
[6], [7] as well as learning cooperative multi-agent behaviors
[8].

Our focus in the paper at hand is on the latter type of
learning in games. Our main contributions are:

• We introduce a new, open-source gaming benchmark
domain that features two appealing properties. The hurdle
of entrance is kept low as the benchmark is based
on rather simple and clearly defined interfaces for the
designer of the learning agents. Besides, it is embedded
into a framework that brings along the requisites that are
necessary to develop adaptive and learning agents.

• We have performed an extensive case study applying
neural batch mode reinforcement learning algorithms in
the scope of the mentioned gaming benchmark. In this
context, we have developed a novel scaling heuristic that
reduces the implementation effort for the designer of the
learning algorithm. We present this heuristic as well as
the results we obtained in the scope of our case study.

In Section II we briefly recap the basics of batch-mode
reinforcement learning and of the neural fitted Q iteration
(NFQ) algorithm. Section III presents the mentioned dynamic
scaling technique and argues why this heuristic is beneficial. In
Section IV we introduce the Star Ships Learning Framework
(SSLF) and highlight its character as a suitable benchmark
for learning algorithms. Section V summarizes the results we
obtained in using NFQ for learning policies that control the
agents participating in the SSLF gaming framework.

II. BATCH REINFORCEMENT LEARNING

Batch reinforcement learning is a subfield of dynamic
programming-based reinforcement learning that has grown
considerably in importance during the recent years. Histori-
cally, the term ‘batch RL’ is used to describe a reinforcement
learning setting, where the complete amount of learning expe-
rience – usually a set of transitions sampled from the system
– is a priori given and fixed. The task of the learning system
is then to derive a solution – usually an optimal policy – from
this given batch of samples.



In contrast to classic online reinforcement learning where
updates to the value function are made after each transition,
batch reinforcement learning methods store and reuse their ex-
perience. That experience is a set of transition tuples consisting
each of a state, an action taken in that state, the immediate
reward received (or immediate costs interchangeably), as well
as the successor state entered. After having collected a batch,
i.e. a larger number of transition tuples, the computational
update to the value function is performed. Various batch RL
algorithms have been proposed in the literature [9]–[11] and
batch RL has recently been successfully applied to various
challenging real-world applications [12], [13].

Figure 1 sketches the general batch reinforcement learning
framework. It basically consists of three main steps that are
interconnected by two loops. The step of sampling experience
(outer loop) realizes interaction with the environment and
creates a set of transition tuples (data). The second step utilizes
dynamic programming methods to generate a set of training
patterns which are, subsequently and iteratively (inner loop),
employed by some batch mode supervised learning algorithm
that outputs an approximated function represented by the
training patterns. Note that most of the practical realizations
of batch reinforcement learning algorithms work in alternating
(also called ‘growing’) batch mode. This means that the outer
loop can be iterated an arbitrary number of times, involving
corresponding data samplings and successive training phases
realized by the inner loop.

The individual components shown in Figure 1 may be
implemented differently, e.g. data may be sampled using a
greedy or an exploring policy and for the task of fitting a
function approximator to the training patterns, in principle,
any of a dozen supervised learning algorithms can be utilized.
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Fig. 1. The Batch-Mode Reinforcement Learning Framework: In growing
batch mode, the stages of interaction with the environment (outer loop) and
value function learning (inner loop) are interweaved.

A. Fitted Q Iteration
Perhaps the most popular algorithm in batch RL is ‘Fitted

Q Iteration’ (FQI, [14]). FQI (when embedded into the inner
loop of Figure 1) computes an approximation of the optimal
policy from a finite set of four-tuples T = {(si, ai, ci, s′i)|i =
1, . . . , |T|}. These experience units may be collected in any
arbitrary manner and they are made up of states si, the
respective actions ai taken, the immediate costs ci incurred,
as well as the successor states s′i entered. The basic algorithm
takes T, as well as a regression algorithm as input, and
after having initialized Q̃ and a counter k to zero, repeatedly
processes the following three steps until some stop criterion
becomes true:

1) increment k
2) build up a training set F for the regression algorithm

according to:
F := {(ini, outi)|i = 1, . . . , |T|}

where ini = (si, ai) and outi = ci +
γminb∈A Q̃

k−1(s′i, b)
3) use the regression algorithm and the training set F to

induce an approximation Q̃k : S ×A→ R
Subsequently, we consider neural fitted Q iteration (NFQ,
[15]), a realization of fitted Q iteration where multi-layer
perceptron (MLP) neural networks are used to represent the
Q function and an enhanced network weight update rule is
employed (step 3). NFQ is an effective and efficient RL
method for training a Q value function that requires reasonably
few interactions with the environment to generate policies of
high quality. We will also discuss a heuristic extension of NFQ
to be used in the scope of this work in Section III.

B. Neural Fitted Q Iteration
In online Q learning in conjunction with a table-based value

function representation, updates to the value function can be
made easily on the fly. By contrast, when faced with very
large or continuous state-action spaces and when using neural
networks as value function approximators, as we intend to
do, no direct value assignment for singular state-action pairs
can be realized. Instead, an error function must be introduced,
which measures the deviations between (a) state-action values
approximated by the function approximator (we denote the
approximation realized by a neural network as Q̃) and (b)
those that are defined through the Bellman equation (cf. the
outi values in the algorithm sketch of FQI in Section II-A).
For example, given a single transition tuple (s, a, c, s′) and a
current value function estimate Q̃ represented by an MLP, the
squared Bellman error(

Q̃(s, a)− (c+ γ ∈b∈A Q̃(s′, b))
)2

may be employed, which can be minimized using gradient
descent techniques, like the backpropagation algorithm, on the
neural network’s connection weights.

A drawback of this type of online update is its wasteful
utilization of data as each transition tuple is used only once.
Thus, typically thousands of episodes are necessary until a
policy of sufficing quality is obtained [16]. This disadvantage
can be tributed, at least in part, to the global approximation
character of MLPs: Weight updates for a certain state-action
pair (s, a) may cause unforeseen changes of the value function
in very different regions of the joint state-action space.

Of course, the last-mentioned effect can be beneficial in
terms of yielding generalization. However, recent studies on
the neural fitted Q iteration (NFQ) algorithm have shown, that
more stable and reliable learning results can be achieved when
learning in batch-mode, while not sacrificing the excellent
generalization capabilities of neural networks [15].

As indicated, NFQ is an instance of the class of fitted
Q iteration algorithms we described above, where the super-
vised batch-mode regression algorithm, i.e. the ‘fitting’ part,



is realized by a multi-layer perceptron neural network. Let
T = {(si, ai, ci, s′i)|i = 1, . . . , |T|} be the set of transition and
let Q denote the space of Q value functions over S ×A rep-
resentable by MLPs. Then, for each pattern i, NFQ calculates
target values outi as specified in the context of FQI (cf. Section
II-A), thereby utilizing the recent Q function estimate Qk−1,
and computes the next (kth) iterate of the state-action value
function Qk by minimizing the batch error

|T|∑
i=1

(Qk(si, ai)− outi)2. (1)

The minimization of this expression is achieved by adapting
the connection weights of the neural network representing Qk,

Qk ← argmin
f∈Q

|T|∑
i=1

(f(si, ai)− outi)2.

As actual neural network training procedure, we utilize
the Rprop algorithm [17] which naturally builds on batches
of training data and, hence, can be integrated easily into a
batch RL algorithm. An important merit of using Rprop, when
compared against, e.g. backpropagation, is its insensitivity
with respect to learning parameters which rids us from tuning
parameters for the supervised part of an FQI algorithm.

III. NEURAL FITTED Q ITERATION WITH DYNAMIC
SCALING

A practical concern during neural network training is the
distribution of the target values (desired outputs outi). Clearly,
in a supervised learning scenario this issue is not critical
because the concrete target values are given. In reinforcement
learning, however, they – the optimal state-action values –
are generally not known beforehand. This point is especially
striking when utilizing an iterative batch-mode RL approach,
like the neural fitted Q iteration algorithm we are focusing on.

Assume you are implementing a learning approach where
you want the state-action value function be represented by
an MLP and where you have no prior knowledge about the
learning task. Thus, you do neither know about typical episode
length nor the length of an optimal episode given some starting
state. Moreover, you have no clue about the range of state-
action values that the optimal Q function might adopt, i.e.

Q?min := min
(s,a)∈S×A

Q?(s, a) and Q?max := max
(s,a)∈S×A

Q?(s, a)

are unknown a priori.
This lack of knowledge also affects any single iteration k of

a fitted Q iteration method (k denotes the iteration counter),
because the distribution as well as the minimum and maximum

outkmin := min{outi|i = 1, . . . , |T|}
outkmax := max{outi|i = 1, . . . , |T|}

of the outi values (cf. step 2 in the pseudo code in Section
II-A) are unknown beforehand, and they are varying from

iteration to iteration2.
When intending to train an MLP, it must be kept in mind,

that networks of this type can cover an output range from the
interval I = (0, 1) only. Thus, it is the task of the designer
of the learning algorithm to ensure that in each iteration k
of the NFQ algorithm as well as for each target value outi it
always holds outi ∈ I . Consequently, the algorithm’s designer
must be cautious, when defining the cost function such that
target values below zero or above one can never occur. This,
however, is hard (and tedious) to accomplish when having no
knowledge about an optimal policy and about possible minimal
or maximal Q values that might occur. Typically, the designer
does even not know of how many steps poor, good, or optimal
episodes will consist. The straightforward approach of using
a pre-defined scaling factor for the outi values is flawed for
the same reason; minimal and maximal state-action values are
not known beforehand. Besides, when the algorithm’s designer
is over-cautious in the way he/she scales the output values
and, hence, squeezes them into a small fraction of I (for
example such that outkmin = 0.2 and outkmax = 0.3), then
the performance of the MLP as function approximator might
be affected as well, as not the full range I is exploited. For
the reasons mentioned we suggest a dynamic linear scaling
mechanism that, in each iteration k, newly determines the way
that all output values outi are to be scaled.

A. Dynamic Scaling Heuristic

Different sigmoidal activation functions of neural networks
have different limit values (e.g. I = [0, 1] or [−1, 1]). We
therefore allow for working with a customizable interval I =
[netmin, netmax]. The task now is to find a mapping from
x ∈ [outmin, outmax] to y ∈ I and vice versa as sketched in
Figure 2. This is done by the bijective linear function

fscale : x 7→ y = Ax+B

with gradient

A =
netmax − netmin

outmax − outmin

and axis intercept

B = −outmin · (netmax − netmin)

outmax − outmin
+ netmin.

x

y

netmin

netmax

outmin outmax

Fig. 2. Mapping fscale : [outmin, outmax] → [netmin, netmax]

2Ideally, in the limit (k → ∞) it should hold Q?
min = outkmin and

Q?
max = outkmax, given that F comprises the best/worst state-action pairs

for the task at hand.



The main point is, that the parameters A and B are
recalculated (and stored for later use) in each NFQ iteration.
The pseudo code in Figure 3 shows where the scaling heuristic
is applied (gray color). After having randomly initialized the
weights of the MLP, we assign initial values to the scaling
parameters A and B (lines 1–3). If no a priori knowledge
about the task at hand is available, then these initial values
can be safely set to A = 1 and B = 0 such that, initially,
actually no scaling is applied at all. Lines 6–13 correspond to
the outer batch RL loop and, thus, to interaction between the
agent and the environment. New state transitions are collected
in trajectories from arbitrary initial states to some positive or
negative terminal state (S+ or S−).

Starting in line 16, we provide NFQ-related pseudo code,
enriched by the dynamic scaling heuristic we are suggesting.
It is important to note that our scaling technique does not just
map Q values to some value within I = (0, 1), but that the
dynamic mapping between Q values and neural net outputs
is anchored in the learning algorithm itself. As a matter of
fact, for the purpose of calculating new target values from the
current net values (line 20), the inverse back-scaling function
f−1scale(y) =

y−B
A is used. When all target values are computed,

A and B are adapted according to the new minimal and
maximal values (lines 22–25) and the target values are scaled
by the new scaling function (lines 26–28).

From the perspective of a learning system’s designer, the
utilization of the proposed scaling heuristic features a number
of benefits:
• The cost/reward function can be taken ‘as is’ (e.g. step

costs of 1.0) and does not have to be scaled manually.
• The heuristic will find the ‘right’ interval, i.e. the true

range of the Q value function by itself.
• The whole capacity of the neural net output can be

utilized.
• The computing time for scaling operations does not carry

weight in comparison to the effort for the supervised
fitting of the function approximator.

• There is no drawback in the quality of found solutions
compared to an algorithm with a manually (and appropri-
ately) tuned cost function, as we will show empirically.

IV. SSLF: A NEW BENCHMARK FOR RL ALGORITHMS

The Star Ships Learning Framework (SSLF) is an open-
source framework3 that provides basic routines and methods
in order to interact with the space shooter game Star Ships
[18]. It provides the necessary interfaces for controlling the
program’s star ships and the program’s logic from outside the
Star Ships program and, thus, commends itself as benchmark.

A. The Game Star Ships

Star Ships is an action game in which two players take
control over two star ships fighting against one another. It
is played in a two-dimensional toroidal universe where both
players must try – by use of their offensive weapons (phasers

3http://sourceforge.net/projects/sslf/

1 init net() → Q̃
2 init net minmax values() // e.g. netmin := 0, netmax := 1
3 init scaling params() // e.g. default values A = 1, B = 0
4 repeat
5 // collect state transitions:
6 repeat
7 set startsituation()
8 repeat
9 chose best action() // exploitation: a = argminb Q̃(s, b)

10 or chose random action() // with exploration prob. ε
11 T := T ∪ {(s, a, c, s′)}
12 until s′ ∈ S+ or s′ ∈ S−
13 until ’enough transitions collected’
14 reinit net()
15 init scaling params() // optional

// NFQ-Iterations:
16 for k := 1 to N do
17 // compute target values (training set F):
18 for i := 1 to |T| do
19 ini := (si, ai)

20 outi :=


C+ if s′i ∈ S

+

C− if s′i ∈ S
−

c(si, ai, s
′
i) + γminbQ

k−1(s′i, b) else
// Qk−1(s′i, b) = f−1

scale(get_current_net_value(s
′
i, b))

21 end for
// apply scaling:

22 outmin := mini∈{1,...,|T|} outi
23 outmax := maxi∈{1,...,|T|} outi

24 A :=
netmax − netmin

outmax − outmin

25 B := −
outmin · (netmax − netmin)

outmax − outmin

+ netmin

26 for i := 1 to |T| do
27 neti := fscale(outi)
28 end for

// train new MLP using F = {(ini, neti)|i = 1, . . . , |T|}:
29 reinit net()
30 Rprop training() → Qk

31 end for
32 QN → Q̃
33 until ’behavior successfully learned’

Fig. 3. Batch-Mode RL Using Neural Network Value Function Approxima-
tion: This pseudo code corresponds to both, the outer and inner loop of the
batch-mode RL framework (cf. Figure 1), where in the inner loop we employ
an extended NFQ variant using the proposed dynamic scaling heuristic.

as well as photon torpedos) – to weaken the opponent’s shields
successively until they, finally, collapse and the opponent ship
can be destroyed with the next hit. The game play and story
behind the game is leant to Star Trek Enterprise (TNG). Of
course, each ship may also be controlled not by a human
player, but by an intelligent (software) agent or even a learning
agent. To facilitate the latter, the SSLF provides the necessary
infrastructure in order to allow an intelligent agent – which is
entirely decoupled from the Star Ships program, i.e. runs as a
stand-alone software – to control one of the ships.

The external agent is informed about the current state of
the environment, is expected to think about a good action to
take, and of course, to finally execute that action. It can thus
realize a sense-think-act loop and, moreover, has the option of
improving its strategy by learning.

B. The Framework and its Interfaces

Essentially, the SSLF allows you to create your own agents
that play within Star Ships. They interact with the arcade
game by reading state information from file (written there
periodically by the game engine) and, in turn, writing action
information to file (read from there periodically by the game
engine). Figure 4 provides a graphical overview of the SSLF.



The state space is high-dimensional and contains several
continuous dimensions. The current state is comprised by the
following entries.
• time: current time step (integer)
• game state: −1 (game is going on), 0 (game ended, ships

collided), 1 (game ended, ship 1 lost), 2 (game ended,
ship 2 lost)

• s1x, s1y , s1vx, s1vy: x/y position/velocity of ship 1 (real)
• s2x, s2y , s2vx, s2vy: x/y position/velocity of ship 2 (real)
• s1α, s2α: angle of ship 1/2 (integer, discretized to 15

degrees, i.e. within [0,15,30,...,345])
• s1#t, s

2
#t: number of alive torpedos shot by ship 1/2 (can

take values from within [0...5])
• s1p, s2p: ship 1/2 is currently hit by a phaser (in [0,1])
• s1t , s2t : ship 1/2 is currently hit by as many torpedos (can

take values from within [0,...,10])
• #t: number of currently active torpedos overall
• tix, tiy , tivx, tivy: x/y position/velocity of the ith torpedo

(real)
• tiage, t

i
from: torpedo i is as many time steps old (in

[0,...,100]) / descends from that ship (in [1,2])
The following seven actions are available to each ship in

each time step (costs in terms of consumed energy are given
in brackets): no action (0), fire phaser (2), fire torpedo (2),
turn left (0), turn right (0), accelerate by a single impulse (1)
and warp jump (10). Initially each ship has 400 energy units.

The simulation is time discrete with alternating action stages
(for ship 1 and 2, respectively) lasting 50ms each. Movements
are deterministic, but hits by phasers as well as torpedos cause
stochastic damage to the ships (damage in terms of reducing
the available energy by some random value from [11,16]).
The SSLF does not provide access to the system model, i.e. a
learning agent would either have to infer the model or to
use a model-free learning approach. However, it allows for
setting arbitrary states which is a fundamental requirement
when pursuing a learning approach.
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Fig. 4. Components of the Star Ships Learning Framework

The SSLF comprises a base class from which own agents
can be derived easily. It also brings along one such example
hand-coded agent (called ‘AI agent’ subsequently), whose
playing strength is already superior to a well-trained human
player. This agent is provided in order to extend it, i.e. it
should be interpreted as a base line AI player that is to be
enhanced by certain clever, machine-learned sub-behaviors. In

the remainder of this paper we report on our experiences in
doing exactly this: We identified two particular behaviors (an
offensive and a defensive one) and made the AI agent learn
them autonomously using the NFQ algorithm with dynamic
scaling presented in the preceding sections.

V. EMPIRICAL EVALUATION

In this section, we evaluate the use of neural batch-mode
reinforcement learning with the dynamic scaling heuristic we
proposed. We start off with a proof of concept by illustrating
the basic functioning of NFQ with dynamic scaling and by
presenting some results we obtained for the well-known pole
swing-up benchmark.

In the second part of this empirical evaluation, we focus on
the SSLF benchmark introduced in Section IV. Throughout all
experiments in the context of the Star Ships Learning Frame-
work, our dynamic scaling heuristic is employed. We finish
this evaluation by a comparison of the playing performance
of a hand-coded SSLF agent playing against an agent whose
strategy incorporates the behaviors we learned using neural
batch-mode RL with dynamic scaling.

A video illustrating and explaining the learning process as
well as the empirical results achieved, when embedding the
learning results into SSLF’s base AI agent, is available as
supplementary material to this paper4.

A. Proof of Concept: The Pole Swing-Up Benchmark

In this well-known benchmark a pole is fixed at one ending
and a mass (precisely, a mass point) is mounted at its opposite
end. We use the established setting where the pole has a length
of 0.5m and the mass mounted onto it has a mass of 2 kg. The
task is to swing up the pole out of the idle position using small
torques. To make the task sufficiently challenging we decided
on two available actions −1Nm and +1Nm. The state space
comprises two dimensions, an angle out of [−π, π] (0 denoting
the upright position) and an angular velocity.

The criterion for optimality is the number of time steps
needed to swing up. Hence, each action has constant costs c.
In the goal region S+ (angle within [−0.2, 0.2]) no costs arise
(C+ = 0). The problem now is that the interval [Q?min, Q

?
max],

in particular Q?max, is unknown a priori as we do not know
an optimal solution yet. We expect Q?max to correspond to
the time steps an optimal solution would need to swing up
the pole. The common approach would be to try different
values for c, to fit the value function to the output range [0,1].
For the purpose of comparison, we included this (tedious)
methodology in our experiments. Moreover, we applied our
dynamic scaling heuristic.

1) Experimental Setup: We employ a fixed pattern set T
containing 1862 transitions that has been generated as follows:
starting from each angle in [−3.1,−3,−2.9, . . . , 3.1] with
velocity 0, two sequences are run executing always the same
action (−1 and +1, respectively) up to 15 time steps or until
reaching the goal. With this set a wide area of the state-
action space is covered by T. A basic NFQ algorithm with

4http://bit.ly/dBxy3L or http://www.youtube.com/watch?v=rgYwP5slMH4



N = 250 iterations is executed for different definitions of the
cost function ranging from c = 0.1 to 0.001. We set up our
extended algorithm with dynamic scaling (denoted as DYN)
with [netmin, netmax] = [0, 1]. A and B are initialized with
default values 1 and 0. The cost function is arbitrarily set to
c = 1. In all experiments an MLP with 3 inputs, one hidden
layer with 9 neurons, and one output is used. The discount
factor is set to γ = 1.0.

2) Results: As shown in Figures 5 and 6, if the direct costs
are ‘over-valued’ (c = 0.1 and c = 0.05), the value function
does not fit into the output range of the MLP, which results in
unsuitable solutions. By contrast, the dynamic scaling heuristic
is able to determine the boundaries of the resulting value
function automatically and scales the values exactly to the
output range of the MLP. The results are therefore nearly
identical to those of having chosen manually a ‘suitable’ cost
function (e.g. c = 0.02, c = 0.01 and c = 0.001).

It should be noted that NFQ with dynamic scaling needs
some more iterations to adjust the upper bound outmax. This
results in a slightly flatter slope of the learning curve (within
the inner batch RL loop) and must be tributed to the fact that
outmax starts from 1 and is incremented by c = 1 in each
iteration whereas the optimal solution needs Q?max = 76 time
steps. As a consequence, the share of improper policies is
higher during the early NFQ iterations.

To this end, however, the learning process could be easily
sped up by choosing better initial scaling parameters (e.g. A =
0.01 and B = 0 as visualized in Figure 5 as DYN0.01,0). In
general, for a fixed data set, this is no option as it would mean
to tune parameters again (which is exactly what we wanted to
omit by introducing the dynamic scaling technique). But, if we
consider a growing batch approach, we may assume that the
interval of the value function will not change significantly from
one pass of the outer loop to the next one. This information
could be used by keeping the parameters A and B of the
previous pass as initial values of the current pass (which is
actually done by omitting line 15 in Figure 3).
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out in Figure 5 as well as the number of time steps that were needed to
swing up the pole out of the idle state for the best solution found within 250
iterations. The values are averaged over all 10 repetitions of the experiment.

B. Learning Partial Behaviors

Next, we turn to the use of RL approaches in the scope of
the proposed gaming benchmark and, thus, investigate several
learning problems in the Star Ships Learning Framework.

As the state space is large (cf. Section IV-B) and the overall
task (winning the game) is too complex we had to identify
relevant subtasks for an agent playing this game. We focused
on (1) evading and (2) firing torpedos, as the exposure to
torpedos is – beside close combat using phaser attack which
is beyond the scope of this paper – decisive for the outcome
of a match. Both subtasks were further divided and learned in
different levels of complexity.

1) Torpedo Evasion: The aim here is to evade a torpedo that
crosses the trajectory of the own ship consuming a minimum
of energy. The underlying MDP consists of the following
components:
• Our state space S has four dimensions: the distance

between the own ship and the torpedo, the orientation
towards the torpedo, and the relative velocity (x and y)
assuming a ship-centered coordinate system with the x-
axis running through the torpedo.

• Offensive actions are not relevant for this task. We also
want to optimize the learned behavior in terms of energy
usage. We therefore surrender the expensive warp jump
(ten units of energy). Thus, the set A of possible actions
is restricted to rotations and impulses only.

• The transition model p is deterministic in this case,
since the opponent is not considered. However, it is
unknown to our learning agent. Hence, a model-free
learning approach must be taken.

• The cost function c corresponds to the energy usage of the
respective action. Thus an impulse costs 1 unit. To bring
in a time aspect (the agent should also evade within the
fewest time steps) costs of 0.25 are assigned to rotations
(which do not consume energy).
If the ship is hit by the torpedo, final costs of C− = 13.5
arise5. Else, i.e. if the agent has evaded successfully, the
sequence ends with no final costs (C+ = 0).

• A discount factor γ = 0.95 is introduced.

5expected/average loss of energy



A set of 5000 training start situations was generated as follows:
If the ship does not execute any action (impulse), it will be hit
by the torpedo. Both the velocity of the ship and the torpedo
as well as the orientation are randomized such that different
angles of striking occur. There is a minimum of 6 time steps
until collision.

The behavior is learned using the algorithm described in
section III-A. An MLP with 5 input neurons (4 for the state,
1 for the action), one hidden layer with 10 neurons and
one output was used. The learning process is subdivided in
training units (TU), which correspond to cycles of the outer
loop (cf. Figure 1). In each TU 500 transitions (about 100
episodes depending on the current performance) are collected
and added to T. Actions are selected exploiting the current
function approximator and choosing random actions with a
probability of ε = 10%. Afterwards a new MLP is trained
within N = 20 NFQ iterations. Both the newly added and
already existing transitions are used (growing batch).

The results of this process are shown in Figure 7. After
about 10 training units, the agent has learned to evade the
torpedo in 86% of the start situations. Furthermore, the learned
value function provides information about whether it is still
possible to evade. A high value indicates that there is probably
no way to evade using only rotations and impulses. This
information could be used when embedding this sub-behavior
manually into an entire strategy.
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Fig. 7. Learning Processes of the Torpedo Evasion Behaviors: After each
training unit the current neural network was evaluated on an independent set
of 50 start situations. ’Success’ means the agent was able to evade all 1, 2 or
3 torpedos.

As the own ship might be threatened by more than one
torpedo at the same time one has to think about how to
deal with such a case. For example, considering only the
nearest torpedo might result in a maneuver that routes the
ship directly towards another torpedo. We therefore decided
to learn separate sub-behaviors for the evasion of 2 and 3
torpedos in a similar way. Start situations are generated with
2 and 3 torpedos, each starting from a different (random)
direction. They might hit the ship staggered by few time steps.
An episode ends, if the agent succeeds in evading all torpedos
or if it is hit by one of them. The state space thus rises to 8
and 12 dimensions and the number of hidden neurons of the
MLP is increased to 15 and 20, respectively. This way we
made the learning task far more challenging. Nevertheless,
the agent succeeds in achieving noticeably high success rates
(cf. Figure 7).

2) Torpedo Attack: The goal in this subtask is to orient
the own ship and fire a torpedo directly into the course of
the opponent ship. As a proof of concept we start with both
ships standing still and the opponent being passive. The state
space thus comprises only two dimensions, the distance and
the orientation towards the opponent. Actions are restricted
to left and right rotations (at costs of 0.5 for enforcing time
optimality) and to firing off a torpedo (2 energy units), which
terminates the current sequence from the agent’s perspective
(in practice we have to wait some time steps to observe the
outcome). Additional costs (reward) of −13.5 arise, if the
opponent is hit by the torpedo. This time we use three MLPs
(one for each action) with the topology 2–7–1 to approximate
the value function. The results are shown in Figure 8.

Interestingly, the success rate (share of torpedos that hit
the opponent) does not grow beyond 60% in this artificially
simplified scenario with stationary opponent ships. This is due
to the fact that the rotations are discretized in steps of 15◦. As a
consequence, there are many situations in which the stationary
opponent cannot be reached by the torpedo because the direct
orientation towards the opponent lies disadvantageous between
two steps of the discretization – one might say the opponent
is hiding in a ‘blind spot’.

This changes, however, when both ships are provided with a
random, but constant velocity as in the following experiment.
Now the state space is extended by two dimensions for the
relative velocity (vx,vy) between the ships. The agent success-
fully learns in which direction it has to fire off the torpedo to
actually hit the constantly flying opponent in remarkably many
situations (cf. Figure 8).
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Fig. 8. Learning Processes of the Torpedo Attack Behaviors: After each
training unit the current neural network was evaluated on an independent
set of 50 start situations. ’Success’ means the opponent ship was hit by the
torpedo.

As a next step we want to provide the opponent with some
kind of intelligence. The first choice is the hand-coded AI
player (dubbed ‘AI agent’) that is already delivered with the
SSLF. To avoid disturbing the learning process we manually
disable the offensive actions (phaser and torpedo) and the
unpredictable warp jump of the opponent by replacing them
with ‘no action’. The state space is expanded by the orientation
of the opponent towards the own ship to enable the learning
agent to predict the action of the opponent. In fact, the learning
agent is able to adjust itself to the strategy of the opponent
and hit the enemy ship in up to 9 out of 10 situations.



C. Evaluation of the Hybrid Agent

As mentioned, the SSLF already brings along a hand-coded
AI player which, as a matter of fact, is already hard to beat
for a human player. In what follows, we dedicatedly improve
the capabilities of this AI agent by embedding the two RL-
optimized sub-behaviors described in the previous sections.

First, the AI agent should be enhanced by an intelligent
sub-behavior for torpedo evasion. Whenever the ship is in
danger of one or more torpedos, the learned evasion for the
corresponding number of torpedos takes control. In the very
rare case of more than three torpedos threatening the ship only
the first three are considered. If the minimum state-action value
is greater than 10 (indicating a low probability for evading
in a conventional way) a warp jump is executed. As shown
in Figure 9 the AI agent (AIA) is considerably improved by
employing the learned evasion although this sub-behavior is
only activated 9.4% of the time.
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Fig. 9. Playing against itself, the AI agent (AIA) wins on average one out
of two matches. By contrast, when both learned sub-behaviors (evasion and
attack) are integrated, this agent wins 10 out of 11 matches against the AIA.
The share of actions chosen by the learned sub-behaviors is also shown.

Next, we enhance the AI agent by the torpedo attack trained
against itself. The learned attack is employed whenever the
distance of the two ships is greater than the maximal phaser
length (i.e. close combat is disregarded and left untouched).
Otherwise the hand-coded behavior of the original AIA takes
account which will turn towards the opponent and fire phasers
with a high probability, if the distance is advantageous.

Finally, both learned sub-behaviors are integrated into the
AIA. As above, the evasion is considered, if the agent is
threatened by at least one torpedo. Else, the learned, RL-based
torpedo attack or the hand-coded close-combat behavior of the
AIA are applied. The performance of the resulting player is
astonishing. It wins 10 out of 11 matches against the hand-
coded AI player (cf. Figure 9) and thus makes a point for the
strength of neural batch-mode reinforcement learning.

VI. CONCLUSION

In this paper, we have made two contributions. First, we
have suggested a new dynamic scaling heuristic for neural
batch-mode RL algorithms like NFQ. This heuristic rids
the learning algorithm’s designer from the tedious task of
aligning the learning task’s function of immediate cost with
the properties of the neural value function approximator. We
have shown empirically that this dynamic scaling mechanism

yields superior performance when compared to a poorly-
adjusted definition of direct costs. By contrast, if the learning
algorithm’s designer has done a good job and employed a
suitable definition of the immediate cost function, then the
quality of the resulting policies is equal to what our scaling
heuristic achieves.

Our second contribution has been the introduction of the
Star Ships Learning Framework, a novel gaming benchmark
domain for reinforcement learning algorithms. We have suc-
cessfully evaluated our dynamic scaling-based NFQ variant
in the context of this benchmark. Besides, we envision that
the SSLF may be conveniently utilized by lecturers as an
attractive tool for teaching purposes and by other researchers
and practitioners as a benchmark to compare various RL
approaches against one another.
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