
Scaling Adaptive Agent-Based Reactive
Job-Shop Scheduling to Large-Scale Problems

Thomas Gabel and Martin Riedmiller
Neuroinformatics Group

Department of Mathematics and Computer Science, Institute of Cognitive Science
University of Osnabrück, 49069 Osnabrück, Germany

Email: thomas.gabel@uos.de, martin.riedmiller@uos.de

Abstract— Most approaches to tackle job-shop scheduling
problems assume complete task knowledge and search for a
centralized solution. In this work, we adopt an alternative view
on scheduling problems where each resource is equipped with
an adaptive agent that, independent of other agents, makes
job dispatching decisions based on its local view on the plant
and employs reinforcement learning to improve its dispatching
strategy. We will delineate which extensions are necessary to
render this learning approach applicable to job-shop scheduling
problems of current standards of difficulty and present results
of an adequate empirical evaluation.

I. INTRODUCTION

In production scheduling, tasks have to be allocated to a
limited number of resources in such a manner that one or more
objectives are optimized. Though various classical approaches
can be shown to provide optimal solutions to various schedul-
ing problem variants, they typically do not scale with problem
size, suffering from an exponential increase in computation
time. In previous work [1], [2], we have explored a novel
alternative approach to production scheduling that performs
reactive scheduling and is capable of producing approximate
solutions in minimal time. Here, each resource is equipped
with a scheduling agent that makes the decision on which job
to process next based solely on its partial view on the plant.
As each agent follows its own decision policy, thus rendering
a central control unnecessary, this approach is particularly
suitable for environments where unexpected events, such as
the arrival of new tasks or machine breakdowns, may occur
and, hence, frequent re-planning would be required.

We employ reinforcement learning (RL, [3]) to let the
scheduling agents acquire their control policies on their own
on the basis of trial and error by repeated interaction within
their environment. After that learning phase, each agent will
have obtained a purposive, reactive behavior for the respective
environment. Then, during the application phase, e.g. during
application in a real plant, each agent can make its scheduling
decisions very quickly by utilizing its reactive behavior.

So far, we had empirically evaluated our agent-based re-
active scheduling approach merely for randomly created job-
shop scheduling scenarios of moderate sizes (e.g. three re-
sources and up to twelve jobs), where usually only one learn-
ing agent was involved (the other agents worked according to
some fixed dispatching rule). From a scheduling researcher’s
point of view, however, problem suites of that size would be

considered trivial by current standards of difficulty. Therefore,
although challenging from a machine learning point of view,
the empirical results already published may be regarded as
little more than a thorough proof of concept.

In this paper, we focus on a consistent further development
of our approach, showing its general applicability and, in
particular, its applicability to job-shop scheduling problems
on a large scale. Accordingly, the empirical part of this paper
is devoted to an evaluation of our multi-agent production
scheduling approach to established scheduling benchmark
problems from the field of Operations Research.

In Section II, we provide a thorough review of our reinforce-
ment learning approach to learning local dispatching policies
in production scheduling. Based on that foundation, in Section
III we will develop and discuss necessary extensions of the
basic approach that are required to gain its applicability for
large-scale benchmark problems. Next, Section IV discusses
related work and clarifies similarities and differences between
our approach to solving job-shop scheduling problems and
other techniques from the field of Artificial Intelligence and
Operations Research. In Section V, we present and discuss the
results of an empirical evaluation obtained using the methods
we suggest. Finally, Section VI summarizes.

II. A REINFORCEMENT LEARNING APPROACH TO

REACTIVE JOB-SHOP SCHEDULING

In this section, we summarize our approach to having
learning agents associated to the resources that autonomously
acquire dispatching policies and in so doing adapt themselves
to the plant structure and inherently consider constraints [1].

A. Basics

In job-shop scheduling n jobs must be processed on m
machines in a given order. Each job ji (i ∈ {1, . . . , n})
consists of vi operations oji,1, . . . , oji,vi

that have to be
handled on a specific resource for a certain duration. A job
is finished after completion of its last operation (completion
time cji

) and it is said to be tardy if it is not finished by its
due date dji

. In general, scheduling objectives to be optimized
all relate to the completion times of the jobs. In previous
work, we focused on the optimization goal of minimizing
summed tardiness

∑
Tj =

∑n
i=1 max(0, cji

− dji
) which

subsumes other variants of the optimization problem, such as

259

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

the total completion time criterion or the maximum makespan
problems. For reasons of better comparability with other
scheduling techniques, in this paper minimizing maximum
makespan Cmax (length of the schedule Cmax = max{cji

})
is our primary optimization goal.

We equip each resource with an agent that determines which
job to process next at this resource. The agent’s dispatching
policy, however, is not fixed but learned autonomously by the
agent by getting feedback on the overall dynamic behavior of
the system. Compared to common dispatching rules our ap-
proach bears the advantage that a virtually arbitrarily complex
combination of features describing the situation of the resource
and of waiting jobs can be considered.

Classical solution algorithms that perform predictive
scheduling are likely to find the optimal solution to a given
problem instance (at least, up to certain problem sizes). This is
possible because a central control and complete knowledge of
the problem and its constraints is assumed (e.g. a correspond-
ing disjunctive graph can be constructed). Unfortunately, the
schedule found using an analytical solution method is tailored
to one specific problem instance. Knowledge transfer to similar
scheduling problems and reactions to unforeseen changes in
the environment are not possible without re-planning. So, a
main goal of our learning approach to solving scheduling
tasks is to allow for a time-efficient computation and total
decentralization, while still obtaining high-quality solutions for
scheduling problems of current standards of difficulty.

B. MDP Modelling of Production Scheduling

We model the scheduling problem as a Markov Deci-
sion Process (MDP) where the system’s state s(t) ∈ S
is characterized by the current situation of the plant. This
comprises the processing situation of the m resources (we use
index k ∈ {1, . . . , m} to refer to one specific agent/resource
subsequently), as well as the processing status of each of the
jobs currently in the system. An action a(t) ∈ A describes the
decision of which jobs are to be processed next. The goal of
scheduling is to find a policy π� that minimizes production
costs C(s, a, t) accumulated over time

π� := min
π

Cmax∑
t=1

C(s, a, t). (1)

Costs may depend on the current situation, as well as on the
selected decision, and have to relate closely to the desired
optimization goal. For instance, costs may arise when a job is
tardy or when a resource remains idle; we will discuss issues
of defining an appropriate cost function in Section III-A.

In our approach, the global decision a(t) is a vector of single
decisions ak(t) that are made by agents associated to the m
resources. For an agent taking an action means deciding which
job to process next out of the set Ak(t) of currently waiting
jobs at the corresponding resource k.

C. Local vs. Global View

The global view s(t) on the plant, including the situation at
all resources and the processing status of all jobs, would allow

some classical solution algorithm to construct a disjunctive
graph for the problem at hand and solve it. In this respect,
however, we introduce a significant aggravation of the prob-
lem: First, we require a reactive scheduling decision in each
state to be taken in real-time, i.e. we do not allot arbitrary
amounts of computation time. Second, we restrict the amount
of state information the agents get. Instead of the global view,
each agent k has a local view sk(t) only, containing condensed
information about its associated resource and the jobs waiting
there. On the one hand, this partial observability increases the
difficulty in finding an optimal schedule. On the other hand, it
allows for complete decentralization in decision-making, since
each agent is provided with information only that are relevant
for making a local decision at resource k.

D. Details of the Learning Algorithm

When there is no explicit model of the environment and of
the cost structure available, Q learning [4] is one of the RL
methods of choice to learn a value function for the problem
at hand, from which a control policy can be derived. The Q
function Q : S × A → R expresses the expected costs when
taking a certain action in a specific state. The Q update rule
directly updates the values of state-action pairs according to

Q(s, a) := (1 − α)Q(s, a) + α(c(s, a, s) + γ min
b∈A(s)

Q(s, b))

(2)
where α is the learning rate, γ the discount factor, and where
the successor state s and the immediate costs c(s, a, s) are
generated by simulation or by interaction with a real process.

Since our approach enforces a distributed decision-making
by independent agents, the Q update rule is implemented
within each learning agent and adapted to the local decision
process (α = 1 for better readability):

Qk(sk(t), ak(t)) := Csa(t,∆tk) (3)

+γ min
b∈Ak(t+∆tk)

Qk(sk(t + ∆tk), b)

This learning rule establishes a relation between the local dis-
patching decisions and the overall optimization goal, since the
global immediate costs are taken into consideration (e.g. costs
caused due to tardy jobs). Since a resource is not allowed
to take actions at each discrete time step1, Csa collects the
immediate global costs arising between t and the next decision
time point t + ∆tk according to

Csa(t,∆tk) :=
t+∆tk∑

i=t

C(s, a, i). (4)

If we assume convergence of Qk to the optimal local value
function Q�

k, we obtain a predictor of the expected accu-
mulated global costs that will arise, when in state sk a job
denoted by ak would be processed next. Then, a policy π that

1After having started operation oji the resource remains busy until that
operation is finished.

260

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

exploits Qk greedily will lead to optimized performance of the
scheduling agent. A greedy policy chooses as next action

ak(t) := π(sk, ak, t) = min
b∈Ak(t)

Qk(sk(t), b). (5)

As indicated in the Introduction, we distinguish between the
learning and the application phases of the agents’ dispatching
policies. During the latter, the learned Qk function is exploited
greedily according to Equation 5. During the former, updates
to Qk are made (cf. Equation 4) and an exploration strategy is
pursued which chooses random actions with some probability.

When considering a single job-shop problem, the number
of possible states is, of course, finite. The focal point of our
research, however, is not to concentrate just on individual
problem instances, but on arbitrary ones. Hence, we need to
assume the domain of Q to be infinite or even continuous, and
will have to employ a function approximator to represent it.

E. Goals of this Work

The learning approach sketched so far does not comply with
some of the assumptions required by Q learning. First, an
agent uses only compressed information of the complete state
(local view). However, empirical evidence (e.g. [5], [6] or our
previous work [1], [2]) suggests that Q learning can bring
about good results in such scenarios. Second, no centralized
global decisions are made, but instead the global decision
is split into a number of local ones made by independently
learning agents. Unless the policies of other agents are stable,
the environment as experienced by a single agent appears to
be non-stationary. In earlier work, we have circumvented that
problem by considering situations primarily where a single
learning agent was part of the system. In this paper, we focus
on multiple agents learning in parallel to acquire high-quality
policies for established scheduling benchmark problems.

The main goal of this work consists of a further development
of our reinforcement learning approach to reactive scheduling
to make it scalable and applicable to problem instances of
current standards of difficulty. We aim at tackling standard
scheduling benchmark problems (with ten and more resources
and jobs, respectively) and at comparing the performance of
our approach to other reactive techniques, as well as to the best
known solutions. Consequently, in the next section we identify
a number of open questions crucial for its applicability and
describe necessary extensions required to render it usable for
large-scale scheduling problems.

III. SCALING THE ADAPTIVE SCHEDULING APPROACH

Challenging job-shop scheduling benchmarks cover prob-
lems involving ten and more resources and jobs, respectively.
When intending to consistently apply our learning approach
to such benchmark problems several extensions to the basic
approach have to be introduced.

A. Issues of Task Modelling

A crucial precondition for our adaptive agent-based ap-
proach to learning to make sophisticated scheduling decisions
is that the global direct costs (as feedback to the learners)

coincide with the overall objective of scheduling. We define
the global costs C to be the sum of the costs that are associated
with the resources (sum over k) and jobs (sum over i):

C(s, a, t) :=
m∑

k=1

uk(s, a, t) +
n∑

i=1

rji
(s, a, t) (6)

When focusing on minimizing overall tardiness, it is possible
to set uk ≡ 0 and to let rji

capture the tardiness Tji
=

max(0, cji
− dji

) of the jobs by

rji
(s, a, t) :=

{
Tji

, if ji is being finished at t

0, else
(7)

In this formulation it is not reflected when the tardiness actu-
ally occurs. So we prefer the following, equivalent definition
that assigns costs at each time step during processing, from
which the learning algorithm may benefit:

rji
(s, a, t) :=

{
1, if ji is tardy at t

0, else
(8)

Equations 7 and 8 are no longer useful when the overall
objective is to minimize the makespan Cmax of the result-
ing schedule. Accordingly, information about tardy jobs or
finishing times cji

of individual jobs provide no meaningful
indicator relating to the makespan. However, the makespan of
the schedule is minimized, if as many resources as possible
are processing jobs concurrently and if as few as possible
resources with queued jobs are in the system: Usually, a high
utilization of the resources implies a minimal makespan [7].
This argument gives rise to setting rji

≡ 0 and to defining

uk(s, a, t) := |{ji | ji queued at k}| (9)

so that high costs are incurred when many jobs, that are
waiting for further processing, are in the system and, hence,
the overall utilization of the resources is poor.

We represent states sk ∈ S and actions/jobs ak ∈ Ak by
feature vectors generated by the resources’ local view. The
features have to exhibit some relation to the future expected
costs, hence to the makespan, and must allow for a compre-
hensive characterization of the current situation. Moreover, it
is advisable to have features that represent properties of typical
problem classes instead of single problem instances, so that
acquired knowledge is general and valid for similar problems
as well. With respect to the desired real-time applicability of
the system, the features should also be easy to compute.

Due to space restrictions, we omit a detailed explanation of
all features used, but provide a description on a more abstract
level. State features depict the current situation of the resource
by describing its processing state and the set Ak of jobs
currently waiting at that resource. That job set characterization
includes the resource’s current workload, an estimation of
the earliest possible job completion times, or the estimated
makespan. Furthermore, we capture characteristics of Ak by
forming relations between minimal and maximal values of
certain job properties over the job set (like operation duration
times or remaining job processing times). Action features

261

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

characterize single jobs ak from Ak currently selectable by
k. Here, we aim at describing makespan-oriented properties
of individual jobs (like processing time indices), as well as
immediate consequences to be expected when processing that
job next, viz the properties of the job’s remaining operations
(e.g. the relative remaining processing time). Apart from that,
action features cover the significance of the next operation
oji,next of job ji (e.g. its relative duration).

B. Issues of Value Function Approximation

Since an agent’s value function Qk has an infinite domain,
we need to employ some function approximation technique to
represent it. In this work, we use multilayer perceptron neural
networks to represent the state-action value function. In par-
ticular, we aim at exploiting the generalization capabilities of
neural networks yielding general dispatching policies, i.e. poli-
cies which are not just tuned for the situations encountered
during training, but which are general enough to be applied to
unknown situations, too. Input to a neural net are the features
(cf. Section III-A) describing the situation of the resource as
well as single waiting jobs2. Thus, the neural network’s output
value Qk(sk, ak) directly reflects the priority value of the job
corresponding to action ak depending on the current state sk.

Training Data Utilization: During the learning phase, a set
SL of scheduling problem instances is given—these problems
are processed on the plant repeatedly, where the agents are
allowed to schedule jobs randomly with some probability, ob-
taining new experiences that way. In principle, it is possible to
perform an update on the state-action value function according
to Equation 4 after each state transition. However, to foster fast
improvements of the learned policy by exploiting the training
data as efficiently as possible, we revert to fitted Q iteration.

Fitted Q iteration denotes a batch (also termed off-line) rein-
forcement learning framework, in which an approximation of
the optimal policy is computed from a finite set of four-tuples
[8]. The set of four-tuples T = {(si, ai, ci, si)|i = 1, . . . , p}
may be collected in any arbitrary manner and corresponds to
single “experience units” made up of states si, the respective
actions ai taken, the immediate costs ci incurred, as well as
the successor states si entered. The basic algorithm takes T,
as well as a regression algorithm as input, and after having
initialized Q̃ and a counter q to zero, repeatedly processes the
following three steps until some stop criterion becomes true:

1) increment q
2) build up a training set F for the regression algorithm

according to: F := {(ini, outi)|i = 1, . . . , p} where
ini = (si, ai) and outi = ci + γ minb∈A(si) Q̃q−1(si, b)

3) use the regression algorithm and the training set F to
induce an approximation Q̃q : S × A → R

Subsequently, we consider neural fitted Q iteration (NFQ,
[9]), a realization of fitted Q iteration where multi-layer
neural networks are used to represent the Q function. NFQ

2In the experiments whose results we describe in Section V, we made use
of seven state features and six action features, hence having 13 inputs to the
neural network.

is an effective and efficient RL method for training a Q
value function that requires reasonably few interactions with
the scheduling plant to generate dispatching policies of high
quality. We will discuss an adaptation of NFQ to be used in
the scope of this work in Section III-C.

Convergence Problems: A critical question concerns the
convergence of the learning technique to a (near-)optimal
decision policy when used in conjunction with value function
approximation. Using neural networks as function approxima-
tors, the risk of diverging learning results arises. There are,
however, several methods for coping with the danger of non-
convergent behavior of a reinforcement learning method. For
more details on that topic we refer to [10] and [11].

In order to be able to safely apply our learning approach to
reactive scheduling for complex benchmark problems, we rely
on policy screening, a straightforward, yet computationally
intensive method for selecting high-quality policies in spite of
oscillations eventually occurring during learning (suggested by
Bertsekas and Tsitsiklis [12]): We let the policies generated
undergo an additional evaluation (by processing problems
from a separate set of screening scheduling problems SS),
which takes place in between single iterations of the NFQ
learning algorithm. So, we can determine the actual perfor-
mance of the policy represented by the Q function in each
iteration and, finally, detect and return the best policy created.

C. Issues of Inter-Agent Coordination

In the literature on multi-agent learning, a distinction be-
tween joint-action learners and independent learners is made.
The former can observe their own, as well as the other agents’
action choices. Consequently, in that case the multi-agent
MDP can be reverted to a single-agent MDP with an extended
action set and be solved by some standard method. Here,
however, we concentrate on independent learners because:

1) We want to take a fully distributed view on multi-agent
scheduling. The agents are completely decoupled from
one another, get local state information, and are not
allowed to share information via communication.

2) Decision-making shall take place in a distributed, reac-
tive manner. Hence, no agent will be aware of the jobs
being processed next on other resources.

3) The consideration of joint-action learners with global
view on the plant would take us nearer to giving all
agents the ability to, e.g., construct a disjunctive graph
for the scheduling problem at hand and use some clas-
sical solution method to solve it. With respect to 1) and
2), this is exactly what we intend to avoid.

We are, of course, aware that the restrictions that we impose
on our learning agents depict a significant problem aggravation
when compared to the task of finding an optimal schedule with
full problem knowledge.

Given the fact that the scheduling benchmarks to which
we intend to apply our approach are deterministic, we can
employ a powerful mechanism for cooperative multi-agent
learning during the learning phase where all agents learn in
parallel. Lauer and Riedmiller [13] suggest an algorithm for

262

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

distributed Q learning of independent learners using the so-
called optimistic assumption (OA). Here, each agent assumes
that all other agents act optimally, i.e. that the combination of
all elementary actions forms an optimal joint-action vector.
Given the standard prerequisites for Q learning, it can be
shown that the optimistic assumption Q iteration rule

Qk(s, a) := max{Qk(s, a), r(s, a)+ γ max
b∈A(s)

Qk(s, b)} (10)

to be applied to an agent-specific local Q function Qk con-
verges to the optimal Q� function in a deterministic envi-
ronment, if initially Qk ≡ 0 for all k and if the immediate
rewards r(s, a) are always larger or equal zero. The basic idea
of that update rule is that the expected returns of state-action
pairs are calculated in the value of Qk by successively taking
the maximum. For more details on that algorithm and on the
derivation of agent-specific policies, we refer to [13].

For the problem settings we are considering in the scope
of this paper, we have to take the following two facts into
consideration: First, we must use the notion of non-negative
costs instead of rewards, so that small Q values correspond to
“good” state-action pairs incurring low expected costs. Second,
we perform batch-mode learning by first collecting a large
amount of training tuples and then calculating updated values
to the Q functions using the NFQ training method.

To comply with these two requirements, we developed a
batch-mode reinforcement learning method that adapts and
combines neural fitted Q iteration and the optimistic as-
sumption Q update rule. First note that in a deterministic
environment where scheduling scenarios from a fixed set SL of
problems are repeatedly processed, the probability of entering
some state sk more than once is larger than zero. If in sk

a certain action ak ∈ A(sk) is taken repeatedly, it may
eventually incur very different global costs because of different
elementary actions selected by other agents.

So, the integration of the optimistic assumption with a fitted
Q iteration learning algorithm can be achieved by modifying
the way the training set F is constructed (see algorithm sketch
in Section III-B): Instead of considering all experience tuples
from T, only those are utilized for generating F that have
resulted in minimal expected costs. This implies that we
assume that all other agents have taken optimal dispatching
decision that—in combination with the elementary action ak

taken by the considered agent k—are most appropriate for
the current state. Accordingly, the optimistic target value outl

for some state action pair inl = (sl, al) (with sl = sk(t),
al = ak(t) for some t) can be calculated as follows

outl := min
(si,ai,ci,si)∈T,

(si,ai)=inl

(
ci + γ min

b∈A(si)
Qk(si, b)

)
(11)

Thus, the target value outl for some state-action pair
inl = (sl, al) is the minimal sum of the immediate costs and
discounted costs to go over all tuples (sl, al, ·, ·) ∈ T.

After having constructed the training set F, any suitable
neural network training algorithm (e.g. backpropagation) can
be employed for the regression task at hand.

We stress that using a neural value function approximation
to represent Q and providing agents with local view informa-
tion only, neither the convergence guarantees for certain types
of fitted Q iteration algorithms [8], nor the convergence proof
of the OA Q learning algorithm [13] endure. Nevertheless, it
is possible to obtain convincing empirical results despite the
approximations we employ, as we will show in Section V.

D. Open Issues

Our approach to model the scheduling task as a sequential
decision problem and to make reactive scheduling decisions
features the disadvantage that currently the resulting schedules
correspond to solutions from the set of non-delay schedules,
only: If a resource has finished processing one operation and
has at least one job waiting, the dispatching agent immediately
continues processing by picking one of the waiting jobs.

From scheduling theory, however, it is well-known that for
certain scheduling problem instances the optimal schedule may
be a delay schedule. In fact, the following subset inclusion
holds for three sub-classes of non-preemptive schedules

Snondelay � Sactive � Ssemiactive � S (12)

where S denotes the set of all possible schedules [7]. The
optimal schedule for a particular problem, however, is always
within Sactive, but not necessarily within Snondelay . As a
consequence, our approach will fail to find the optimal solution
for many problem instances, but is capable of generating near-
optimal schedules from Snondelay . An extension of our learn-
ing approach towards delay schedules depicts an important
open issue for future work.

IV. RELATED WORK

Job-shop scheduling has received an enormous amount of
attention in the research literature. Traditionally, a distinction
between predictive production scheduling (also called analyt-
ical scheduling or offline-planning) and reactive scheduling
(or online control) is made [14]. While the former assumes
complete knowledge over the tasks to be accomplished and
aims at achieving global coherence in the process of local
decision-making, the latter is concerned with making local
decisions independently to react to unexpected events or when
a global control cannot be instantiated. Most of the approaches
that utilize computational intelligence to solve scheduling
problems belong to the realm of predictive scheduling.

Classical approaches to solve job-shop scheduling prob-
lems cover, for instance, disjunctive programming, branch-
and-bound algorithms [15], or the shifting bottleneck heuristic
[16]—a thorough overview is given in [17]. Moreover, there
is a large number of local search procedures to solve job-
shop scheduling problems. These include simulated annealing
[18], tabu search [19], as well as squeaky wheel optimization
[20]. With a higher degree of relevance to CI, various different
search approaches have been suggested based on evolutionary
techniques and genetic algorithms (e.g. [21] or [22]).

In contrast to these analytical methods yielding to search
for a single problem’s best solution, our RL-based approach

263

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

belongs to the class of reactive scheduling techniques. Most
relevant references for reactive scheduling cover simple as
well as complex dispatching priority rules (see [23] or [24]).
Focusing on job-shop scheduling with blocking and no-wait
constraints, in [25] the authors develop heuristic dispatching
rules (such as AMCC, cf. Section V) that are suitable for
online control, but that benefit from having a global view on
the entire plant when making their dispatch decisions.

Using our reactive scheduling approach, the finally resulting
schedule is not calculated beforehand, viz before execution
time. Thus, our RL approach to job-shop scheduling is very
different from the work of Zhang et al. [26] who developed
a repair-based scheduler that is trained using the temporal
difference RL algorithm and that starts with a critical-path
schedule and incrementally repairs constraint violations.

V. EMPIRICAL EVALUATION

In this section, we report on the results our adaptive schedul-
ing approach achieves when it is applied to several job-shop
scheduling benchmark problems of varying sizes. Problems
abz5-9 were generated by Adams et al. [16], problems orb01-
09 were generated by Applegate and Cook [15], and finally,
problems la01-20 are due to Lawrence [27]. Although these
benchmarks are of different sizes, they have in common that
no recirculation occurs and that each job has to be processed
on each resource exactly once (vji

= m, i ∈ {1, . . . , n}).

A. Initial Experiment

To start with, we consider the notorious problem ft10
proposed by Fisher and Thompson [28], that had remained
unsolved for more than twenty years. Here, during the learning
phase, SL = {pft10} is processed repeatedly on the simulated
plant, where the agents associated to the ten resources follow
ε-greedy strategies (ε = 0.5) and sample experience while
adapting their behaviors using neural fitted Q iteration with
optimistic assumption and in conjunction with the policy
screening method (we set SL = SS , i.e. the screening set
contains the same problems as the training set).

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 0 500 1000 1500 2000 2500 3000

M
ak

es
pa

n
 o

n
F

T
10

Learning Episodes

LPT Rule: 1295

Random: 1253

FIFO Rule: 1184

SPT Rule: 1074

Adaptive (optimal after t=2920): 960
Theoretical Optimum: 930

AMCC Global View: 985

SQNO: 1209

Fig. 1. Learning process for the notorious ft10 problem.

We compare the performance of five different types of
dispatching policies:

1) a purely random dispatcher
2) three basic dispatching rules (LPT/SPT choose opera-

tions with longest/shortest processing times first, FIFO

considers how long operations had to wait at some
resource.)

3) two more sophisticated dispatching rules (SQNO is a
simplistic heuristic violating the local view restriction
by considering information about the queue lengths at
the resources where the waiting jobs will have to be pro-
cessed next. AMCC is a heuristic to avoid the maximum
current Cmax based on the idea of repeatedly enlarging
a consistent selection, given a general alternative graph
representation of the scheduling problem [25].)

4) our adaptive agent-based approach to reactive scheduling
5) the theoretical optimum (Cmax,opt = 930)

The best solution found by the learning approach was dis-
covered after 2920 repeated processings of SL (see Figure
1). The makespan Cmax = 960 of the corresponding non-
delay schedule thus has a relative error of 3.2% compared
to the optimal schedule. We note that we have detected the
optimal learnt dispatching policy (represented by the agents’
neural networks representing their Q functions) by means of
the policy screening method described in Section III-B.

B. Benchmark Results

Next, we studied the effectiveness of our agent-based
scheduling approach for a large number of different-sized
benchmark problems, ranging from job-shops with 5 resources
and 10 jobs to 15 resources and 20 jobs. We allowed the agents
to sample training data tuples in an ε-greedy manner for max-
imally 25000 processings of SL with SL =SS and permitted
intermediate calls to NFQ with optimistic assumption (N =20
iterations of the Q iteration loop) in order to reach the vicinity
of a near-optimal Q function as quickly as possible.

In Table I, we compare the capabilities of three different
groups of algorithms to the theoretical optimum. Simple
dispatching priority rules (group 1) consider only the local
situation at the resource for which they make a dispatching
decision. The same holds for our adaptive agents approach
(3) whose results are given in the table’s last two columns.
Moreover, two examples of more sophisticated heuristic rules
are considered (group 2) that are not subject to that local
view restriction. We did not include a selection of instances
of analytical solution methods that aim at solving a job-
shop scheduling problem in a centralized manner (like meta-
heuristic search procedures or genetic algorithms) because
these work under superior preconditions compared to local
dispatchers. Instead, we subsume such methods by indicating
their upper limit, viz by denoting the theoretically optimal
solutions of the respective benchmark instances. Note that the
“Remaining Error” of our learning approach is also calculated
with respect to the theoretical optimum.

For the 5 × 15 (la6-10) and 5 × 20 (la11-15) benchmark
problems, the optimal solution can be found by our learning
approach in all cases, and for the 5 × 10 (la1-5), 10 × 10
(la16-20, orb1-9) sets, only a small relative error of less
than ten percent compared to the optimal makespan remains
(3.4/4.0/7.1%). As to be expected, dispatching rules, even
those disposing of more than just local state information (like

264

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Name & Size (1) (2) Theor. (3) Rem.
FIFO LPT SPT SQNO AMCC Optimum Adaptive Error

ft6 6 × 6 65 77 88 73 55 55 57 3.64
ft10 10 × 10 1184 1295 1074 1209 985 930 960 3.23
ft20 5 × 20 1645 1631 1267 1476 1338 1165 1235 6.01
abz5 10 × 10 1467 1586 1352 1397 1318 1234 1293 4.78
abz6 10 × 10 1045 1207 1097 1124 985 943 981 4.03
abz7 15 × 20 803 903 849 823 753 667 723 8.40
abz8 15 × 20 877 949 929 842 783 670 741 10.60
abz9 15 × 20 946 976 887 865 777 691 779 12.74

Avg. abz 1033.6 1124.2 1022.8 1010.2 923.2 841.0 903.4 8.11
la01 5 × 10 772 822 751 988 666 666 666 0.00
la02 5 × 10 830 990 821 841 694 655 687 4.89
la03 5 × 10 755 825 672 770 735 597 648 8.54
la04 5 × 10 695 818 711 668 679 590 611 3.56
la05 5 × 10 610 693 610 671 593 593 593 0.00
Avg. la5×10 732.4 829.6 713.0 787.6 673.4 620.2 641.0 3.40
la06 5 × 15 926 1125 1200 1097 926 926 926 0.00
la07 5 × 15 1088 1069 1034 1052 984 890 890 0.00
la08 5 × 15 980 1035 942 1058 873 863 863 0.00
la09 5 × 15 1018 1183 1045 1069 986 951 951 0.00
la10 5 × 15 1006 1132 1049 1051 1009 958 958 0.00
Avg. la5×15 1003.6 1108.8 1054.0 1065.4 955.6 917.6 917.6 0.00
la11 5 × 20 1272 1467 1473 1515 1239 1222 1222 0.00
la12 5 × 20 1039 1240 1203 1202 1039 1039 1039 0.00
la13 5 × 20 1199 1230 1275 1314 1161 1150 1150 0.00
la14 5 × 20 1292 1434 1427 1438 1305 1292 1292 0.00
la15 5 × 20 1587 1612 1339 1400 1369 1207 1207 0.00
Avg. la5×20 1277.8 1396.6 1343.4 1373.8 1222.6 1182 1182.0 0.00
la16 10 × 10 1180 1229 1156 1208 979 945 996 5.40
la17 10 × 10 943 1082 924 955 800 784 793 1.15
la18 10 × 10 1049 1114 981 1111 916 848 890 4.95
la19 10 × 10 983 1062 940 1069 846 842 875 3.92
la20 10 × 10 1272 1272 1000 1230 930 902 941 4.32
Avg. la10×10 1085.4 1151.8 1000.2 1114.6 894.2 864.2 899.0 3.95
orb1 10 × 10 1368 1410 1478 1355 1213 1059 1154 8.97
orb2 10 × 10 1007 1293 1175 1038 924 888 931 4.84
orb3 10 × 10 1405 1430 1179 1378 1113 1005 1095 8.96
orb4 10 × 10 1325 1415 1236 1362 1108 1005 1068 6.27
orb5 10 × 10 1155 1099 1152 1122 924 887 976 10.03
orb6 10 × 10 1330 1474 1190 1292 1107 1010 1064 5.35
orb7 10 × 10 475 470 504 473 440 397 424 6.80
orb8 10 × 10 1225 1176 1107 1092 950 899 956 6.34
orb9 10 × 10 1189 1286 1262 1358 1015 934 996 6.64

Avg. orb 1164.3 1226.1 1142.6 1163.3 977.1 898.2 962.7 7.13
Overall Avg. 1054.2 1137.6 1037.3 1080.7 932.9 874.6 908.9 4.17

TABLE I

LEARNING RESULTS ON OR JOB-SHOP BENCHMARK PROBLEMS.

AMCC or SQNO), are clearly outperformed. For the mixed
abz benchmarks involving also instances with 15 resources
and 20 jobs per problem, the average relative error increases
to 8.1%, yet the rule-based schedulers are surpassed, still.

C. Generalization for Unknown Problems

Some analytical search procedure (like a tabu search) finds
a suitable schedule for one specific problem instance. By
contrast, our learning approach—after having learned for a
set of one or more training problems—will have yielded dis-
patching policies that are generally applicable. To empirically
investigate to which extent the acquired dispatching policies
are appropriate for unknown problems, we designed a further
experiment. Here, the learning agents were presented three sets
of scheduling problems: (a) the training set SL for the learning
phase, (b) the screening set SS for intermediate policy screen-

ing rollouts (as before SL = SS), and (c) an application set
SA containing independent scheduling scenarios to evaluate
the quality of the learning results on problem instances the
agents have not seen before (SL ∩ SA =∅).

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

20001700140011008005004003002001000

A
vg

. M
ak

es
pa

n
on

 L
A

06
-1

0,

 5
-f

ol
d

cr
os

s-
va

lid
at

ed

Learning Episodes

Adaptive (Appl.Phase): 951.6

Optimum: 917.6

FIFO:1004

LPT:1109

SPT:1054
SQNO:1065

AMCC:956

Learning Phase
Application Phase

Optimum

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

20000165001350010500750045001500125010007505002500

A
vg

. M
ak

es
pa

n
on

 O
R

B
1-

9,

 3
-f

ol
d

cr
os

s-
va

lid
at

ed

Learning Episodes

Adaptive (Appl.Phase): 1065.1

Adaptive (Learn.Phase): 1015.7

Optimum: 898.2

FIFO:1164,SQNO:1163

LPT:1226

SPT:1142

AMCC:977

Learning Phase
Application Phase

Optimum

Fig. 2. Using ν-fold cross-validation, the adaptive agents’ dispatching poli-
cies are trained on the S5×15

la (top) and S10×10
orb (bottom) benchmark suites,

respectively, and, during the application phase, are evaluated on independent
test scenarios. At the chart’s right hand side, the average makespans achieved
by several static dispatching rules are given for comparison.

Of course, it would be unrealistic to expect the dispatching
policies, that were trained using, for instance, a training set
with 5 × 15 problems, to bring about reasonable schedul-
ing decisions for very different problems (e.g. for 10 × 10
benchmarks). Therefore, we have conducted experiments for
benchmark suites S consisting of problems with identical sizes
that were provided by the same authors. From an applicatory
point of view, this assumption is appropriate and purposeful,
because it reflects the requirements of a real plant where
usually variations in the scheduling tasks to be solved occur
according to some scheme and depending on the plant layout,
but not in an entirely arbitrary manner.

Moreover, since |S| is rather small under these premises, we
performed ν-fold cross-validation on S: We disjoint S into SL

and SA, train on SL, assess the performance of the learning
results on SA, and repeat that procedure ν times.

Figure 2 illustrates the learning process and the learning
results for a benchmark suite of 5× 15 problems S5×15

la =
{pla06, . . . , pla10} (top), as well as for the more challenging
suite of 10×10 problems S10×10

orb = {porb1, . . . , porb9}. For the
former, our learning approach succeeds in entirely capturing
the characteristics of the training problems in SL during
training: If the learned dispatching policies process the in-
stances from SL the theoretic optimum is reached, i.e. schedule
decisions resulting in minimal makespan are yielded. More
importantly, even on the independent problem instances from
SA (5-fold cross-validation) that were not experienced dur-
ing training, excellent results are achieved: With an average

265

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

makespan of 951.6 during the application phase, the acquired
policies outperform not just simple dispatching rules, but even
those that have full state information (like AMCC). Further,
the gap in performance compared to the theoretically best
schedules is only 3.7% in terms of average Cmax.

The local dispatching rules obtained for the S10×10
orb bench-

mark suite feature a remaining relative error of 18.6% com-
pared to the theoretic optimum in terms of minimal makespan.
Although for these more intricate benchmark problems the
results are less impressive, they allow us to draw two empiric
conclusions: First, traditional dispatching priority rules that
solely employ local state information regarding the respective
resource (just as our learning approach does) are clearly
outperformed. And, second, the resulting dispatching policies
acquired during training feature generalization capabilities
and, hence, can effectively be applied to similar, yet unknown,
scheduling problem instances.

VI. CONCLUSION

Job-shop problems are NP-hard. We have pursued an alter-
native approach to scheduling where each resource is assigned
a decision-making agent that decides which job to process
next, based on its partial view on the production plant. We use
neural reinforcement learning to enable the agents to learn a
dispatching policy from repeated interaction within the plant
and to adapt their behavior to the environment. This way, we
obtain a reactive scheduling system, where the final schedule
is not calculated beforehand, viz before execution time, where
online dispatching decisions are made, and where the local
dispatching policies are aligned with the global optimization
goal. Hence, not just the adaptation of the agents’ behavior
during learning is decentralized, but also decision-making
during application proceeds without a centralized control.

The focus of this paper is on necessary enhancements to
the basic approach—concerning task modelling, value function
representation, and inter-agent coordination—that are required
to render our learning approach suitable for larger scale
problem sizes. The empirical evaluation on such large-scale
benchmark problems leads to the conclusion that problems
of current standards of difficulty can very well be effectively
solved by the learning method we suggest: In many cases the
resulting schedules are optimal with respect to the optimization
goal, whereas in other cases the remaining gap in performance
is extremely small. Notwithstanding the inherent difficulties
in facing partial state observability and agent-independent
learning, the dispatching policies acquired do also generalize
to unknown situations without retraining.

A disadvantage of our reactive scheduling approach is the
fact that only non-delay schedules can be produced, which in
many cases prohibits finding optimal schedules. An extension
beyond that sub-class of active schedules depicts an important
and promising aspect for future work.

ACKNOWLEDGMENT

This research has been supported by the German Research
Foundation (DFG) under grant number Ri-923/2-3.

REFERENCES

[1] S. Riedmiller and M. Riedmiller, “A Neural Reinforcement Learning
Approach to Learn Local Dispatching Policies in Production Schedul-
ing,” in IJCAI 99, Stockholm, Sweden, 1999, pp. 764–771.

[2] T. Gabel and M. Riedmiller, “Reducing Policy Degradation in Neuro-
Dynamic Programming,” in Proceedings of ESANN2006, Bruges, Bel-
gium, 2006, pp. 653–658.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning. An Introduction.
Cambridge, USA: MIT Press/A Bradford Book, 1998.

[4] C. Watkins and P. Dayan, “Q-Learning,” Machine Learning, vol. 8, 1992.
[5] A. Barto and R. Crites, “Improving Elevator Performance Using Re-

inforcement Learning,” in Advances in Neural Information Processing
Systems 8 (NIPS), Denver, USA, 1995, pp. 1017–1023.

[6] H. Kamaya, H. Lee, and K. Abe, “Switching Q-learning in Partially
Observable Markovian Environments,” in Proceedings of IROS 2000.
Takamatsu, Japan: IEEE Press, 2000, pp. 1062–1067.

[7] M. Pinedo, Scheduling. Theory, Algorithms, and Systems. USA:
Prentice Hall, 2002.

[8] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-Based Batch Mode Rein-
forcement Learning,” Journal of Machine Learning Research, 2005.

[9] M. Riedmiller, “Neural Fitted Q Iteration – First Experiences with a
Data Efficient Neural Reinforcement Learning Method,” in Machine
Learning: ECML 2005. Porto, Portugal: Springer, 2005.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Neuro Dynamic Programming.
Belmont, USA: Athena Scientific, 1996.

[11] R. Munos, “Error Bounds for Approximate Policy Iteration,” in Pro-
ceedings of the International Conference on Machine Learning 2003,
2003.

[12] D. Bertsekas, M. Homer, D. Logan, and S. Patek, “Missile Defense and
Interceptor Allocation by Neuro-Dynamic Programming,” in Transac-
tions on Systems, Man, and Cybernetics, vol. 30, 2000, pp. 42–51.

[13] M. Lauer and M. Riedmiller, “An Algorithm for Distributed Reinforce-
ment Learning in Cooperative Multi-Agent Systems,” in Proceedings of
ICML 2000. Stanford, USA: AAAI Press, 2000, pp. 535–542.

[14] J. Blazewicz, K. Ecker, G. Schmidt, and J. Weglarz, Scheduling in
Computer and Manufacturing Systems. Berlin: Springer, 1993.

[15] D. Applegate and W. Cook, “A Computational Study of the Job-Shop
Scheduling Problem,” ORSA Journal on Computing, vol. 3, pp. 149–156,
1991.

[16] J. Adams, E. Balas, and D. Zawack, “The Shifting Bottleneck Procedure
for Job Shop Scheduling,” Management Science, vol. 34, pp. 391–401,
1988.

[17] E. Pinson, “The Job Shop Scheduling Problem: A Concise Survey and
Some Recent Developments,” in Scheduling Theory and Applications,
P. Chretienne, E. Coffman, and J. Lenstra, Eds., 1995, pp. 177–293.

[18] P. van Laarhoven, E. Aarts, and J. Lenstra, “Job Shop Scheduling by
Simulated Annealing,” Operations Research, vol. 40, pp. 113–125, 1992.

[19] E. Nowicki and C. Smutnicki, “A Fast Taboo Search Algorithm for the
Job Shop Problem,” Management Science, vol. 42, pp. 797–813, 1996.

[20] D. Joslin and D. Clements, “Squeaky Wheel Optimization,” Journal of
Artificial Intelligence Research, vol. 10, pp. 353–373, 1999.

[21] J. Bean, “Genetics and Random Keys for Sequencing and Optimization,”
ORSA Journal of Computing, vol. 6, pp. 154–160, 1994.

[22] B. Ombuki and M. Ventresca, “Local Search Genetic Algorithms for
the Job Shop Scheduling Problem,” Applied Intelligence, vol. 21, pp.
99–109, 2004.

[23] S. Panwalkar and W. Iskander, “A Survey of Scheduling Rules,” Oper-
ations Research, vol. 25, pp. 45–61, 1977.

[24] K. Bhaskaran and M. Pinedo, “Dispatching,” in Handbook of Industrial
Engineering, G. Salvendy, Ed., 1977, pp. 2184–2198.

[25] A. Mascis and D. Pacciarelli, “Job-Shop Scheduling with Blocking and
No-Wait Constraints,” European Journal of Operational Research, vol.
143, pp. 498–517, 2002.

[26] W. Zhang and T. Dietterich, “A Reinforcement Learning Approach
to Job-Shop Scheduling,” in Proceedings of the International Joint
Conference on Artificial Intellience (IJCAI’95), 1995, pp. 1114–1120.

[27] S. Lawrence, “Supplement to Resource Constrained Project Scheduling:
An Experimental Investigation of Heuristic Scheduling Techniques,”
Carnegie Mellon University, Pittsburgh, USA, Tech. Rep., 1984.

[28] J. Muth and G. T. (Eds.), Industrial Scheduling. Dordrecht, The
Netherlands: Kluwer Academic Publishers, 1963.

266

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

