
10 Steps and Some Tricks To Set Up Neural
Reinforcement Controllers

Martin Riedmiller1

Machine Learning Lab
Computer Science Department

Albert-Ludwigs Universitaet Freiburg
riedmiller@informatik.uni-freiburg.de,

WWW home page: http://ml.informatik.uni-freiburg.de

Abstract. Keywords: Neural reinforcement learning, fitted Q, batch
reinforcement learning, learning control

1 Overview

The paper discusses the steps necessary to set up a for successfully solving typical
(real world) control tasks. The major intention is to provide a code of practice
containing crucial steps necessary to transform control task specifications into
the specification and parameterization of a reinforcement learning task. Thereby,
we do not necessarily claim that the way we propose is the only one (this would
require a lot of empirical work, which is beyond the scope of the paper). But,
wherever possible we try to provide insights why we do it the one way or the
other. In that spirit, this paper is mainly intended to be a subjective report on
how we tackle problems by in practice. It is not meant as a general review article
and therefore, many related and alternative methods are not mentioned here.

When faced with a real world system, typically a very large number of ways
exist to formulate it as a learning problem. This is somewhat different from
the situation usually found in reinforcement learning papers, where all the main
settings (like state description, actions,) are usually given. In the following we
therefore carefully distinguish between the (real world) control problem (which
is given) and the learning problem (which we have to design). Of course, ideally,
when the learning task is solved, the resulting policy should fulfill the original
controller task. The goal of this paper is to show how we can use the degrees of
freedom in the modelling of the learning task to successfully solve the original
control task. Our procedure of setting up a neural reinforcement learning sys-
tem worked well for a large range of real, realistic or benchmark-style control
applications, e.g. [HR03,Rie05b,HR07,RMD07,GR07,RGHL09,KR09,GLR11].

2 The Reinforcement Learning Framework

2.1 Learning in Markovian Decision Processes

The approach for learning controllers followed here tackles control problems
as discrete-time (MDPs). An MDP is described by a set S of states, a set A

of actions, a stochastic transition function p(s, a, s′) describing the (stochastic)
system behavior and an immediate reward or cost function c : S ×A→ R. The
goal is to find an optimal π∗ : S → A, that minimizes the expected cumulated
costs for each state. In particular, we allow S to be continuous, assume A to
be finite, and p to be unknown to our learning system (model-free approach).
Decisions are taken in regular time steps with a constant 4t.

The underlying learning principle is based on [Wat89], a model-free variant
of the idea from . The basic idea is to iteratively learn a value function, Q, that
maps state-action pairs to their expected optimal path costs. In Q-learning, the
update rule is given by

Qk+1(s, a) := (1− α)Q(s, a) + α(c(s, a) + γmin
b
Qk(s′, b)).

Here, s denotes the state where the transition starts, a is the action that
is applied, and s′ is the resulting state. α is a learning rate that has to be
decreased in the course of learning in order to fulfill the conditions of stochastic
approximation and γ is a factor. It can be shown, that under mild assumptions
Q-learning converges for finite state and action spaces, as long as every state
action pair is updated infinitely often (see e.g. [BT96]). Then, in the limit, the
optimal Q-function, Q∗, is reached. The optimal policy π∗ can then be derived
by greedily evaluating the optimal Q-function:

π∗(s) ∈ arg min
a∈A

Q∗(s, a)

For a detailed introduction to reinforcement learning the reader is referred
to the excellent textbooks [BT96,SB98].

2.2 Q-learning with function approximation

When dealing with large or even continuous state spaces, a tabular representation
of the Q-function comes to its limits or is simply infeasible. A standard way to
tackle this, is the use of function approximation to represent the Q-function. We
focus on neural networks in the following, but other approximation schemes (like
e.g. Gaussian processes [DRP09], CMACs [Sut96,TR07], . . .) are being used as
well.

One big advantage of using neural networks is their capability to generalize to
unseen situations - a fact particularly useful in large or continuous state spaces,
where one can not expect to experience all situations during training. However,
this positive feature has also a negative impact: when the standard Q-learning
rule is applied to a certain state transition, it will also influence the value at
other inputs in an unforeseeable manner.

To work against this effect, we developed a neural Q-learning framework, that
is based on updating batches of transitions instead of single transition updates as
in the original Q-learning rule. This approach has turned out to be an instance of
the family of algorithms [EPG05], and was named ’ (NFQ)’ accordingly [Rie05a].

The basic idea underlying NFQ is simple but decisive: the update of the value
function is performed considering the complete set of transition experiences in-
stead of single transitions. Transitions are collected in triples of the form (s, a, s′)
by interacting with the environment. Here, s is the original state, a is the chosen
action and s′ is the resulting state. The set of experiences is called the sample
set D.

The algorithm is displayed in figure 1. It consists of two major steps: The
generation of the training set P and the training of these patterns within a
multilayer perceptron. The input part of each training pattern consists of the
state sl and action al of training experience l. The target value of each pattern
is computed as suggested by the Q-learning rule: it is the sum of the transition
costs c(sl, al) plus the expected minimal path costs for the successor state s′l.
The latter is computed on the basis of the current estimate of the Q−function,
Qk.

Since at this point, training the Q-function can be done as batch learning of
a fixed pattern set, we can use more advanced supervised learning techniques,
that converge more quickly and more reliably than ordinary gradient descent
techniques. In particular, NFQ uses the algorithm for fast supervised learning.
Rprop adapts its search step size based on the signs of the partial derivatives
and has proven to be very fast and yet robust with respect to the choice of its
parameters. For a detailed description of Rprop see [RB93]. The training of the
pattern set is executed either for a predefined number of epochs (=complete
sweeps through the pattern set), or until the error is below a certain prede-
fined limit. Although simple and straight-forward, training for a fixed number
of epochs works well and therefore is our standard choice. For a more detailed
discussion about NFQ, please refer to [Rie05a].

3 Characteristics of the control task

In this work, we consider control scenarios of the following type. The controller
has to control a technical system or process such that finally a desired target
situation is achieved. The current situation of the system is measured by sensors.
Thus, the control goal is usually defined by making one or more sensor values
equal to externally given reference values within some tolerance bounds. To
do so, the controller has to apply an appropriate sequence of control actions.
The control system is realized as a , that acts at discrete time steps. At every
time-step, the sensor values are measured, and the controller computes a control
action, which is then applied to the process.

Different types of control tasks exist within this framework. An important
characterization is if the control task has a defined termination or not. In the
first case, control terminates immediately, once a certain goal criterion has been
achieved. A typical example would be to drive a mobile robot to a certain target
location. The task is terminated, once the target location is reached.

The second case is more challenging: the control task does not end, if a target
condition is reached once. Instead, the controller has to actively keep the system

NFQ main() {
input: a set of transition samples D; output: Q-value function QN

k=0
init MLP() → Q0;
Do {

generate pattern set P = {(inputl, targetl), l = 1, . . . ,#D} where:

inputl = sl, al,

targetl = c(sl, al) + γ minbQk(s′l, b)
Rprop training(P) → Qk+1

k:= k+1
} While (k < kmax)

Fig. 1. Main loop of NFQ . k counts the number of iterations, kmax denotes the maxi-
mum number of iterations. init MLP () returns a multilayer perceptron with randomly
initialized weights. Rprop training(P) takes pattern set P and returns a mulitlayer
perceptron that has been trained on P using Rprop as the supervised training method.

in a set of goal states, that all fulfill a certain success criterion. Typically, this
criterion is given by the sensor values being equal to their target reference values
within a small tolerance band. This is a very common scenario in the control
of technical systems. A typical example would be to achieve and hold a certain
temperature in a room. From a control perspective, this latter scenario is much
more challenging (since it contains the first one as a special case).

4 Modeling the learning task

This section discusses how to model a given (real-world) control task appropri-
ately within the neural reinforcement learning framework. We discuss alterna-
tives and ’tricks’ while always trying to stay as close as possible to the framework
proposed by the theory of dynamic programming.

4.1 State information

The underlying reinforcement learning framework crucially depends on the as-
sumption of the Markov property of state transitions: the successor state is a
(probabilistic) function of the current state and action. As a consequence, state
information provided to the learning system must be ’rich’ enough — ’rich’ in
the sense that the observed state transition does not depend on additional his-
torical information. In a real application, we can not necessarily expect to get the
complete state information out of the values provided by the sensors. In classical
control theory, the concept of an observer is known to deduce state information
out of the sequence of observed sensor information. However, this requires the

availability of a system model, which we assume not to have in our learning
framework. A standard way to tackle this problem is to provide historical sensor
and action information from previous time steps. Since we are learning anyhow,
we do not rely on a particular semantic interpretability of the state information.
This allows for example to provide more information than necessary or redun-
dant information, to be on the safe side. As a tradeoff, state information should
be kept as small and concise as possible to support good generalization, which
will generally lead to faster learning and better control performance. In techni-
cal dynamical systems, we often use temporal differences of sensor values as an
approximation to physically meaningful values like velocity or acceleration.

Like in supervised learning, using meaningful features instead of raw sensor
values to enforce generalization is often helpful. However, also like in supervised
learning, the design of good features typically requires deep insight into the
application (here: knowledge about system behavior which in the strong sense
we assume not to have). A current research direction is to autonomously learn
meaningful state representations directly out of high-dimensional raw sensor data
(like e.g. cameras) [LR10a,LR10b,RLV12,BSWR12].

Summary:

– state information must be designed out of sensor information and must be
rich enough to support Markov property

– redundant information is not a problem, but it is preferable to keep the input
dimensionality as low as possible

– state representation can be transformed into features to enforce generaliza-
tion

– state information does not necessarily have a human understandable meaning

4.2 Actions

The original control task often allows the application of (quasi) continuous con-
trol values, typically in a certain range between a minimum and a maximum
value. While in principle methods exist to learn continuous control actions (e.g.
[HR11,Rie97]), we will here focus on providing a discrete set of control to our
learning system. This is the most common framework in reinforcement learning
and corresponds to the framework as presented in section 2.

This means, for setting up the learning system, one has to explicitly choose a
discrete set of actions within the range of potential control signals. One potential
choice is a two action set, consisting out of the minimum and maximum control
action (’bang-bang’-control). In classical control theory, such a two-value control
policy is the basis of time-optimal controllers. Of course, oscillating back and
forth between two extreme control signals, e.g. to keep the system close to a
desired sensor output, often is not acceptable when it comes to the control of
real hardware. Therefore it is often advisable, to add additional actions to the
learning set, e.g. a neutral action that does not put additional energy into the
system.

The search space of available policies increases exponentially with the number
of actions. Therefore, from the perspective of learning time, one should try to
keep the number of available actions limited. However, there is of course a trade-
off: a smaller number of actions leads to a coarser control behavior and the
learning controller might not be able to fulfill the required accuracy in control.

There is a close interplay with the length of the control interval 4t: a larger
control interval might require a larger action set to achieve the same level of
controllability and vice-versa: the smaller the control interval, the coarser the
action set may be, since more frequent interaction (and thus correction) is pos-
sible. The dynamic output element framework exploits this close relationship
between temporal and structural aspects of the action set to enable more flexi-
ble control policies [Rie97].

Trivially, a least requirement to the action set is that a policy must exist,
that transfers the system to the goal state and - in case of the non-terminal state
framework (see below, section 4.4) - keeps it within the goal area.

Summary:

– action set should be kept small to allow fast learning

– tradeoff: more actions can enhance quality or accuracy of control policy

– actions must allow to reach goal states and to keep the system within goal
area in the non-terminal goal state setting.

4.3 Choice of control interval 4t

The control interval4t denotes the time between two control interventions of the
learning system. In classical control theory, controller design is often assuming
that interaction happens in continuous time (like e.g. in classical PID-control).
Therefore one aims to make the control interval 4t as small as possible to ap-
proximate the assumed continuous time scenario - otherwise, the controller will
not work as expected. This is no necessary requirement in the learning frame-
work proposed here. Instead, the controller learns to adapt its behavior to the
control interval given - therefore also larger control intervals can be managed.
This additional degree of freedom is a big advantage, since for example a slower
controller might be realized on less expensive hardware.

As a general tradeoff, learning gets easier, if the control interval is larger,
since there are less decision points. On the other hand, the smaller the control
interval, the more accurately the system can be controlled. If absolutely no
prior knowledge of the system behavior is available, then 4t must be chosen
empirically. A potential strategy to determine 4t is to start with a relatively
large time step, which helps to learn faster, and then to refine it until the desired
accuracy is achieved.

As already discussed in section 4.2 there is a close interplay between the
available action set, the control interval4t, and the potential accuracy in control.

Summary:

– the larger the control interval 4t, the fewer decisions have to be taken to
reach the goal, therefore learning is generally faster

– tradeoff: a smaller control interval 4t potentially allows more accurate con-
trol and better control quality

4.4 The terminal goal state and the non-terminal goal state setting

As already discussed in section 3, control tasks can either terminate once a goal
criterion is met, or (virtually) continue forever. In the latter case, the control
goal is not only to reach a state fulfilling certain success criteria, but to actively
keep the system in a set of goal states, that all fulfill these success criteria. A
typical success criterion for a state could be, for example, that all sensor values
correspond to their target values within some tolerance bound. In the following
we discuss, how these two control scenarios can be modeled in our learning
framework.

For control tasks, mainly two learning scenarios are most appropriate: the
and the non-terminal goal state framework. From the learning perspective, the
terminal goal state setting is the simpler one. The task is to transfer the con-
trolled system from an initial state to a terminal goal state by an appropriate
sequence of actions. Once the goal state is reached, the episode is stopped, and
the target Q-value of the last state action pair is set to the transition costs plus
final costs of the terminal state.

This can be implemented by computing the target Q values as follows

Q(s, u) =

{
c(s, u) + γ · terminal costs(s′) , if s′ ∈ X+

c(s, u) + γ ·minbQ(s′, b) , else
(1)

where c(s, u) denotes the of a transition (see below). Here, X+ denotes the set
of all terminal goal states, that fulfill the success criteria and by being reached,
terminate the control task. For each terminal goal state, terminal costs() assigns
the corresponding terminal costs.

On the other side, the non terminal goal state framework is particularly
tailored to control tasks, where the controller also has to actively keep the system
in a set of goal states. Here, X+ again denotes the set of all goal states, that
fulfill the success criteria, but in contrast to the above framework, the control
task is not terminated, when one of those states is reached.

This results in the following rule for the update of the Q-values

Q(s, u) =

{
0 + γ ·minbQ(s′, b) , if s′ ∈ X+

c(s, u) + γ ·minbQ(s′, b) , else
(2)

where as before c(s, u) denotes the immediate costs of a transition outside
the goal region (see below).

This seemingly slight modification has two important consequences: the epi-
sode is not stopped, once a state in the goal area is reached, and secondly no

’grounding’ of the Q values to a terminal value occurs. This has a nasty effect
to the value function, when a multilayer perceptron is used to approximate it.
Due to interpolation effects and the lack of grounding, the value function tends
to steadily increase. We will discuss this problem in further detail in section 5.3.

Since learning in the terminal goal state framework is usually easier, it some-
times makes sense to model a per-se non-terminal control problem as a terminal
state learning problem. The general idea is to consider goal states with a low
change-rate as pseudo terminal states. Then, the terminal goal state framework
according to equation 1 can be applied. During learning, the task is always
stopped, when one of these pseudo terminal states is reached. In the application
phase, the policy learned by this procedure is then applied without stopping.
The idea behind this is, that whenever the system drifts away from its goal re-
gion during application, then the controller immediately brings it back to its
goal region.

However, this method is only an approximation to the actually desired behav-
ior. It moreover requires to heuristically define what a ’low change-rate’ means
within the particular setting. So for non terminal control tasks we recommend
to use the non terminal goal state learning framework whenever possible. We
only wanted to mention this possibility, because sometimes a control task might
be too difficult to learn within the non-terminal goal state framework. Then,
an approximation by a terminal goal state problem might constitute a practical
way to make it work.

Summary:

– in general, terminal goal states make learning easier
– for control applications, often the nonterminal goal state framework is ap-

propriate, since finding a control policy that also stabilizes the system within
the target region is required.

4.5 Choice of X+

The set X+ comprises all states, which fulfill the goal criteria as defined by
the control tasks. One typical way to define X+ is to denote ranges for the
values of each state variable. For the state variables that we want to control, we
typically define a range around their specified target value, i.e. target value ±δ,
where δ > 0 denotes the allowed tolerance. For other state variables, the allowed
ranges might be infinitely large, denoting that we do not care what value they
have for judging membership to X+.

Again, there is a tradeoff: the smaller we choose X+, the more accurate the
successfully learned final controller will be. The larger X+, the easier it will be
to learn, but we also have to accept less accurate controllers as a result.

An important requirement from the perspective of the learning framework is
that X+ is large enough, so that a policy exists, that X+ can be reached from
every starting state. Therefore, the choice of X+ is highly related to the choice
of the action set and the choice of the control interval 4t.

In the undiscounted (γ = 1) nonterminal goal state case, an additional re-
quirement applies for X+. It must be chosen such that a policy exists, that keeps
the system permanently within X+. This policy need not to be known in ad-
vance. Again, this requirement implies the interplay between the choice of X+,
the control interval 4t and the available action set.

Summary:

– the larger X+, the easier it is to learn
– the smaller X+, the more accurate the learned controller will be

4.6 Choice of X−

In many control problems, constraints on the state variables exist, that must not
be violated by a successful control policy. The definition of the set of undesired
states, X− constitutes a way to model this requirement within the proposed
learning framework. In a typical setting, a state is within X− whenever a con-
straint of the original control problem is violated. Whenever a state within X−

is encountered, the control episode is stopped. Below, we show the resulting
computation for the target of the Q-value as an extension of the equation for
the non-terminal goal state framework (equation 2). The application within the
terminal goal state framework is straightforward.

Q(s, u) =

 0 + γ ·minbQ(s′, b) , if s′ ∈ X+

c(s, u) + γ · terminal costs(s′) , if s′ ∈ X−
c(s, u) + γ ·minbQ(s′, b) , else

(3)

The terminal costs for a state within X− should ideally be larger than the
path costs for any successful policy. When using a multilayer perceptron with a
sigmoid output function, we typically use a value close to 1 as terminal costs of
a state within X−.

Summary:

– the learning framework allows the modeling of hard constraints on state
variables

4.7 Choice of immediate and final costs

The choice of the immediate cost function c(s, u) determines the course of the
control trajectory until the target region is reached. It is not uncommon in
reinforcement learning to make c(s, u) a function of the distance to the target
region. This has the advantage, that the immediate costs already contain a local
hint to the goal, which may help learning considerably. From the perspective
of the control task, however, one has to keep in mind, that the final controller
optimizes the path costs to the goal. Optimizing the integrated distances to
the goal might not always be the ideal realization of what is actually intended

(imagine a situation, where a policy first makes a large error but then reaches
the goal in a few time steps, instead of a policy that only makes small errors but
for a long period of time). The situation gets even more difficult, if one has to
design an immediate cost function that trades off between two or more sensor
values, that all have to finally achieve a certain target value.

We therefore prefer a cost formulation, that has the advantage of a very
simple and thus broadly applicable cost function:

c(s, u) =

{
0 , if s′ ∈ X+

c , else
(4)

where c > 0 is a constant value. A reasonable choice of c is that cmultiplied by
the estimated number of time steps of the optimal policy should be considerably
below the maximum path costs that can be represented by the neural network
(which, when using a the standard sigmoid output function, is 1)

The immediate cost function proposed above moreover has the advantage,
that the learned optimal policy has a clear interpretation: it is the minimum
time controller. As a side note: using this immediate cost function, one can also
check the ability of a learning system to learn correct value functions: within
this framework, learning can only be successful, if the learned value function is
actually meaningful, since no hint towards the goal is provided by the immediate
cost function.

The terminal cost function is simple as well: terminal costs are 0, if a terminal
goal state is reached, and 1, if a constraint is violated. Of course, these values
may depend on the potential range of the output values of the neural network.

Summary:

– costs should serve the purpose of meeting the specifications of the original
control task as close as possible

– immediate costs may reflect local hints to the goal to help learning but this
might not necessarily reflect the intention of the original control task

4.8 Discounting

In the above equations, γ with 0 ≤ γ ≤ 1 denotes a discounting parameter.
Using γ < 1 may make learning the value function easier, since the horizon
of the future costs considered is reduced (consider e.g. the extreme case where
γ = 0. Then only the immediate costs are relevant). On the other hand, choosing
a discount rate also has an influence on the resulting optimal policies: if γ < 1,
immediate costs that occur later in the sequence are weighted less. One has to
make sure, that this is in accordance with the initial control task formulation.
We therefore usually prefer a formulation with no discounting, i.e. γ = 1 and
therefore have to make sure that for successful learning, additional assumptions
are fulfilled (e.g. the existence of proper policies, which basically means that
X+ can be reached from every state with non-zero probability. For a detailed
discussion see e.g. [Ber95]).

Summary:

– discounting requires less assumptions and therefore can make learning sim-
pler and/ or more robust

– it must be checked, whether introducing a discounting rate for the sake of
better learning still matches the intention of the original control task.

4.9 Choice of X0

In a typical setup, at the start of each episode, an initial starting state is ran-
domly drawn from the starting state set X0. Ideally X0 is chosen such that it
covers the whole range of initial conditions that occur in the original control
task.

In tasks, that in average require a large number of steps to reach the goal
states, the probability of hitting the goal region by chance can be pretty low.
Here, a method that we call the ’growing-competence’-heuristic [Rie96] might
help: First, start with initial states close to the goal area and then incrementally
increase the set of starting states until it finally covers the complete original
starting state area.

Summary:

– the set of initial starting states for learning should cover the intended working
space of the original control problem

– if applicable, then starting with simple states first and then increasing the
range might help to improve the learning process dramatically

4.10 Choice of the maximal episode length N

Control episodes might take infinitely long — this is inherently the case in the
non-terminal goal state framework and can also occur in the terminal goal state
setting, if the policy neither finds to the goal region nor crashes. Therefore,
while learning, one typically stops the episode after some predefined number
of time steps. This is called the maximal episode length N in the following.
Theoretically, within the fitted Q learning framework, N is not a critical choice.
It just denotes the number of transitions sampled in a row (this is different
from learning methods that rely on complete trajectories). Actually, N might be
as low as 2. Then, per episode only one transition sample is collected. From a
practical perspective, however, it typically makes more sense to consider longer
episodes — in particular, when the policy used to sample the transitions drives
the system closer towards the goal region and therefore allows to collect more
and more ’interesting’ transitions.

A rough heuristic that we use is to make N double or three times as large as
the expected average time a successful controller will need to reach the target
region. If N is chosen too large, then a lot of useless information might be
collected - consider for example very long episodes that just contain cycles of
ever the same states.

Summary:

– theoretically, the choice of N is not critical
– practically,N can considerably influence learning behavior, since it influences

the distribution of the collected transitions.

5 Tricks

5.1 Scaling the input values

Like in normal supervised learning, scaling the input values is an important
preprocessing step. Various methods and according explanations are discussed in
[LBOM98]. As a standard method, in all our learning experiments, we normalize
the input values to have mean of 0 and a standard deviation of 1.

Summary:

– like in supervised learning, it is important that all input values have a similar
level

– a simple scaling to mean 0 and standard deviation 1 works well in all our
learning experiments so far

5.2 The X++-Trick

If no explicit terminal state exists (which is the case in the nonterminal goal state
framework), the output of the neural network tends to constantly increase from
iteration to iteration. This is due to the choice of the transition costs, which are
0 (within the target region) or positive (outside the target region). Therefore,
the target value of each state action pair is larger or at least equally large than
the evaluation of its successor state. Amplified by the generalization property of
the multilayer perceptron, this leads to the tendency to ever increase the output
values of all state action pairs.

A simple but effective remedy against this effect is to actually fix the values of
some state action pairs to 0. We call the set of such states, for which we assume
this to be true, X++. This heuristic is in accordance with a correct working of
the value iteration scheme, as long as 0 is the expected optimal path costs for
the respective state action pairs in X++. Of course, usually state action pairs
for which this is true, cannot be assumed to be known a priori. Therefore, in
order to apply this trick, one has to rely on heuristics. One reasonable choice of
X++ are states, that lie in the center of X+, the region of zero transition costs.
The reasoning behind this is the following: if one starts at a state x at the center
of X+, then a good control policy has a very high chance of keeping the system
within X+ forever — which justifies to assign zero path costs to that starting
state.

If X++ is chosen too large, then for some states within X++ the assumption
of optimal path costs of 0 may be violated. As a consequence, the resulting

policy most likely will not fulfill the expected property of reliably keeping the
system within X+. On the other hand, if X++ is too small, the chance, that
a state actually falls into X++ is very low and therefore the heuristic becomes
ineffective. A remedy against this, is to actually force the learning system to face
states in X++. One possibility to do that, is to enforce starting episodes close
to X++, another possibility is to introduce artificial state transitions, which is
discussed in the context of the in the next section 5.3.

Summary:

– the X++ heuristic is a method to prevent the value function to steadily
increase

– if applied carefully, it is in perfect accordance with the value iteration scheme

5.3 Artificial training transitions

In a certain sense, the learning process can be interpreted as spreading its knowl-
edge of the optimal value function from the goal states to the rest of the state
space. Therefore, it is crucially required to actually have a reasonable number
of state action pairs that lead to a goal state within the overall transition sam-
ple set. An obvious recipe would be to try to enforce the occurrence of such
goal states, e.g. by starting episodes close to the goal area. However, this is not
possible for all systems because they do not allow to set arbitrary initial states.

An unconventional method to cope with the situation is to add artificial state
transitions to the sample set. Then, the pattern set used for training consists of
actually collected transitions, as well as additionally added artificial transitions.
This method was first introduced as part of the hint-to-goal heuristic in our first
NFQ paper [Rie05a] and has meanwhile also been successfully applied by other
researchers using other function approximation schemes (e.g. Gaussian processes,
[DRP09]). The idea of the hint-to-goal heuristic is to introduce artificial state
transitions, that start inX++ and end inX++. Those states have — by definition
of X++ — terminal costs of 0. As a consequence, the value function is ’clamped’
to zero at these input patterns. Supported by the generalization ability of the
function approximation, also the neighboring states will tend to have a low and
thus attractive value.

If for the artificially introduced state action pairs the optimal path costs
are actually zero, the hint-to-goal heuristic will not negatively interfere with
the correct working of the value iteration process. An obvious choice therefore
is a state action pair, where the state is well embedded in X+ such that the
assumption of optimal path costs of 0 is most likely fulfilled. We usually generate
such an artificial state action pair by combining such a state with every action
in the action set.

The number of artificial patterns should be chosen such that a ’reasonable
balance’ between experience of success and regular state transitions exists (as a
rule of thumb, something between 1:100 and 1:10). This is of course a number,
that has to be determined empirically. We are currently working on methods

that automatically find such a balance, but this is ongoing work and beyond the
scope of this paper.

Summary:

– the hint-to-goal heuristic might help to establish a goal region in the value
function, if real experiences of success are difficult to achieve during regular
learning

5.4 Growing Batch

The fitted Q iteration framework originally works with a fixed set of transitions.
No particular assumption is made, how these transitions are collected. In the
extreme case, these experiences are randomly sampled all over the working space
of the controller in advance. In a practical setting, however, this is not always
feasible. One reason is, that arbitrary sampling all over the working space is not
realizable, since initial states can not be set arbitrarily. Another reason is, that
to sample transitions equally over the working space might just be infeasible due
to the huge amount of data required to cover the complete space.

Therefore it is desirable to concentrate on regions of the state space that
are relevant for the final controller. One method to realize this is the growing
batch method. The idea is, that one starts with an empty transition set. After
the first episode, the value function is updated and the new episode is controlled
by exploiting the new value function. Different variants exist, e.g. the value
function can only be updated after n episodes, or the number kmax of NFQ
iterations between two episodes can be varied. In most of our experiments so
far we successfully used this growing batch procedure with the choice of n =
kmax = 1.

Summary:

– the growing batch method aims at collecting more and more relevant transi-
tions when the performance of the policy increases.

5.5 Training the neural Q-function

To represent the value function, we use a neural multilayer perceptron. Although
it is often believed that setting up such kind of networks is a black art and its
parameters are hard to find, we found that this is not particularly critical in
the proposed neural fitted Q framework. One crucial point however is to use a
powerful training algorithm to train the weights. The Rprop learning algorithm
combines the advantage of fast learning and uncritical parameter choice [RB93].
We always use Rprop with its standard parameters. Also we found, that the
number of epochs (sweeps through the training set) is not particularly critical.
We therefore always train for 300 epochs and get good results. One can also
think of ways to monitor the training error and find some stopping criterion

to make this more flexible (e.g. to adapt to different network sizes, to different
pattern set sizes, etc.), but for the applications we had so far, we found this a
minor issue for learning success.

Surprisingly, the same robustness is observed for the choice of the neural
network size and structure. In our experience, a multilayer perceptron with 2
hidden layers and 20 neurons per layer works well over a wide range of appli-
cations. We use the tanh activation function for the hidden neurons and the
standard sigmoid function at the output neuron. The latter restricts the output
range of estimated path costs between 0 and 1 and the choice of the immediate
costs and terminal costs have to be done accordingly. This means, in a typical
setting, terminal goal costs are 0, terminal failure costs are 1 and immediate
costs are usually set to a small value, e.g. c = 0.01. The latter is done with the
consideration, that the expected maximum episode length times the transition
costs should be well below 1 to distinguish successful trajectories from failures.

As a general impression, the success of learning depends much more on the
proper setting of other parameters of the learning framework. The neural network
and its training procedure work very robustly over a wide range of choices.

Summary:

– choice of multilayer perceptron is rather uncritical
– important to have a powerful learning algorithm to adjust the weights
– advantage, if the supervised learning algorithm is not particularly dependent

on the choice of its parameters.

5.6 Exploration

In reinforcement learning, — the deviation from a greedy exploitation of the
current value function — is important to explore the state space. Various sug-
gestions for good exploration strategies have been proposed, e.g. considering a
safe control behavior in the learning phase [HSSU08]. From our experience with
NFQ, a simple ε-greedy exploration scheme is often sufficient. This means that
in every time step, with a certain probability (e.g. 0.1), the action is chosen
randomly instead of greedily exploiting the value function.

In many application cases, we also observe good results even with no explicit
exploration at all. This is due to the fact, that the learning process itself —
the randomly initialized neural value function, the growing experience, the ran-
domly distributed starting states — already bears a fair amount of randomness.
To learn without explicit exploration is also of practical interest. When always
acting greedily, the performance achieved in a training episode is already the
performance, that the final greedy controller will show. This reduces the effort
of additional testing and therefore is particularly interesting for real world tasks.

Summary:

– a simple ε greedy exploration scheme is often sufficient

– if the starting states are well distributed in the working space, then in con-
junction with the growing batch method, even an always greedy exploitation
of the current value function works in many cases

5.7 Delays

In practical systems delays play a crucial role. Delays may occur both on the
sensor side - i.e. a sensor value is available only n time steps later, or on the actor
side - a control action has an effect only some time steps later. Simply neglect-
ing these effects typically leads to bad control behavior or even failures. Various
methods exist, e.g. to use prediction or filter methods to synchronize the infor-
mation available to the controller with the current world situation. One simple
but effective method is to augment state information with historical information
about previous actions applied to the system [WNLL07,RHLL08].

Summary:

– in practice, actuator and sensor delays may often be not neglectable

– a simple remedy is to add historical information about previous action values
to the current state information

6 Experiments

Fig. 2. The real cart pole system.

6.1 The control task

The control task tackled in the following is to control a real cart pole system.
While is a well known benchmark [SB98], this real world task is characterized
by additional challenging features:

– the initial states can not be set to arbitrary values. We moreover assume,
that no human intervention is allowed, in particular, the system can initially
only be started with the pole hanging down

– the control task is to balance the pole upright with high accuracy and with
the cart at a given target position (here: in the middle of the track). The
controller therefore not only needs to learn to swing-up the pole from the
downright position, but also to do it in such a sophisticated manner, that
finally it can be balanced at the requested position.

– one cannot directly control the force applied to the cart, but only the voltage
given to the DC motor driving the car. This introduces additional dynamical
effects into the system.

– due to communication effects, the sensor information is delayed
– there is considerable noise in both actuation and sensor values.
– there is a discontinuity (jump) in sensor values from −π to +π when the

pole is in the downright position.
– there is a hard constraint: the position of the cart may not be less than

-0.25m and more than 0.25m, since the track is bounded.
– the final controller should be able to work from arbitrary initial start states,

not only from one position.

The range of control inputs is (quasi) continuous from -12 volt to 12 volt.
Sensor information provided by the system is the position of the cart and the
pole; no velocity information can be measured. The target values for the sen-
sor values should be reached as fast as possible. The minimum control interval
allowed by the hardware is 4t = 0.01s.

Since on the real system we can only perform a limited number of experi-
ments, we also report some results on a reliable simulation of the real system
(section 6.5). The input and output interfaces are exactly the same for both
simulated and real plant. The simulation model was derived by parameterizing
a physical model of the plant using real data. The accurate match between real
and simulated system behavior allowed us to do keep all modelling decisions and
learning parameter settings the same for both the simulated and the real system.
Therefore in the following, we only describe the real system setup. An imple-
mentation of the simulated plant is available within our open-source learning
framework CLSquare available at

http://ml.informatik.uni-freiburg.de/research/clsquare.

6.2 Modeling as a learning task

State description State information provided to the learning system consists
of sensor values of position (pt), angle (αt), the normalized temporal difference

of these measurements pt−pt−1

4t
and αt−αt−1

4t
. The angle is zero, when the pole is

upright. The angular value has a discontinuity (a jump from −π to +π) when the
pole is hanging down. Nothing particularly is done to resolve this discontinuity.
Instead, we expect the learning algorithm to be able to deal with that. To cope
with the sensor delay, additionally the value of the previous control action at−1
is added to the state information.

Actions The action set available for the learning system consists of the ’stan-
dard’ choice of minimal and maximal control signal plus the ’neutral’ action 0V.
Thus A = {−12V, 0V,+12V }.

Control interval 4t As defined by the hardware, the minimum length of the
control interval is 0.01s. After some initial experiments, we found that a control
interval of 4t = 0.05s is still sufficient for an acceptable control quality while at
the same time allowing a fast and successful learning process.

Non-terminal goal state framework For the cart-pole task, control must
be continued once pole angle and cart position reached their target values to
actively keep the system within the goal states. This means, that the correct
formulation of the learning problem is the non-terminal goal state setting. As a
consequence, every episode is only interrupted, if the system state entered the
failure set X− or if the maximum number of steps per episode, N is reached.

Choice of X+ A state is in X+, if the following two conditions are fulfilled:
the cart position is at most 0.1m away from the target position (here: middle of
the track) and the pole angle deviates from 0 rad by maximally ±0.15 rad. The
rest of the state entries is not considered for judging membership to X+.

Choice of X− A state is in X−, if the cart position is less than -0.25m or more
than 0.25m. This corresponds to the physical boundaries of the track. The rest
of the state entries is not considered for judging membership to X−.

Immediate and final cost functions As immediate costs we use the standard
minimum-time formulation with constant transition costs of 0.01. Thus,

c(s, u) =

{
0 , if |pt| ≤ 0.1m and |αt| ≤ 0.15rad

0.01 , else
(5)

When a state from X− is observed, the episode is stopped and final costs of
+1 are assigned.

Episode length Empirically, a good episode length was found to be N = 200.

6.3 Applied Tricks

Scaling We applied our standard input scaling procedure as described in 5.1.

Choice of X++ and artificial transitions X++ contains only one state,
namely if all state variables are exactly 0. This corresponds to the center of
X+. Of course, this state will most likely not occur by chance in the learning
process. Therefore, this definition makes only sense in conjunction with adding
artificial transitions in the spirit of the hint-to-goal heuristic. Here, we used 3
different artificial patterns, namely state (0,0,0,0,0) combined with all 3 actions.
These transitions were repeated 100 times in the training pattern set, in order
to establish some balance between the (huge) number of normal transitions and
those special transitions. The target values for those artificial patterns is 0.

Growing batch Learning was implemented as a ’growing batch’ process. This
means, that after every episode, one NFQ iteration (new calculation of Q-target
values, supervised learning of the neural Q function) was performed. Then the
next episode was controlled by ε-greedy exploitation of this new Q function.

Training the neural Q function The neural Q function is represented by a
multilayer perceptron with 6 input neurons, two hidden layers with 20 neurons
each and one output neuron. Hidden neurons use the tanh activation function,
the output neuron uses the standard sigmoid function. Rprop with standard pa-
rameters was used for weight updates. In every NFQ iteration step, the network
weights of the learning network were randomly initialized between -0.5 and 0.5
before training. The network was trained for 300 epochs per NFQ iteration.

Exploration No explicit exploration scheme was used for the experiments done
here, i.e. the current Q function was always exploited greedily to determine the
action. This has the advantage, that the application performance can already be
determined during training.

6.4 Measuring quality

The quality of a learning control approach has two important aspects: the quality
of the learning process and the quality of the resulting controller. The quality of
the learning process is measured by the learning effort needed, usually measured
in the number of transitions (or the number of episodes) needed, the quality of
the achieved solution with respect to the used cost function, and the reliability
of the results over a number of learning trials.

The quality of the resulting controller is measured with respect to the spec-
ification of the original control task. Relevant criteria are for example accuracy,
robustness, working area, and performance measures like e.g. the time outside

the tolerated error zone. For a detailed discussion of different criteria also see
[HR11].

Here, we first report results achieved in a realistic simulation. This allows us
to conduct a series of 10 experiments with different seeds of the random generator
in reasonable time. For learning on the real system, we used exactly the same
setup and parameters. The only difference we made was, that the controller was
allowed to learn for a maximum of 500 episodes on the simulated cart-pole and
- due to time restrictions - for a maximum of 300 episodes on the real cart-pole
system.

6.5 Results on the simulated cart pole

For the simulated system, all 10 runs delivered a successful controller. ’Suc-
cessful’ means, that for a test set of 100 random initial starting situations, the
controller was able to swing up the pole and then steadily keep the system within
the desired tolerance. A test run lasted 20s. In average over 10 runs, the best
controller was found after an average training of 392 episodes with a standard
deviation of 80. The average time needed by the best controllers was 3.23s with
a standard deviation of 0.16s.

setup successful trials best controller at episode time outside of X+

Default 10/10 392 (80.7) 3.23s (0.16s)
Table 1. Results on the simulated cart-pole for the standard setup, averaged over
10 trials. Shown are the average number of episode to train the best controller and
its control performance, measured in time outside the target region. The number in
brackets shows the respective standard deviation.

6.6 Results on the real cart pole

The evaluation on the real cart-pole system was slightly different, due to the
effort it takes to do experiments with the real device. However, the overall picture
of the learning behavior on the simulated and real system was consistent.

We performed three learning trials with different initializations of the random
generator. Each learning trial lasted 300 episodes. Besides the reduced number
of maximum episodes, the setup of the learning system was exactly the same as
for the simulated system. In all 3 trials performed, successful controllers were
learned within less than 300 episodes of training. In particular, the controllers
are very robust with respect to varying initial states or to disturbance from
outside.

A video documenting learning and final controller performance is available
at

http://www.youtube.com/watch?v=Lt-KLtkDlh8

7 Conclusion

This paper discusses many of the basic modeling and methodological tricks to
set up a reinforcement learning task. These insights should help to successfully
handle a wide range of interesting control problems. The proposed method builds
on neural fitted Q iteration (NFQ), a method that considers the complete batch
of collected transitions to update the Q function. While the paper is written from
the perspective of using a neural network, it should also give useful insights when
using other kinds of function approximation schemes.

Current and future work is aiming to further improve the method in sev-
eral directions. One big direction is to improve NFQ with respect to resulting
controller quality (e.g. accuracy, continuous actions, interpretation of control
policies, increasing complexity of control tasks, etc). Some steps in this direction
have already been made and are discussed in [HR11]. Another area of ongoing
and future research is to further improve NFQ with respect to robustness and
autonomy of the learning process. A third area is to improve efficiency with re-
spect to the data required for learning. Beyond that, distributed reinforcement
learning algorithms that cooperatively control a complex system in a multi-agent
setting is a vital research area. Distributed learning systems that are based on
the neural learning framework presented here have been successfully applied in
typical multi-agent scenarios like distributed job-shop scheduling [RG11,GR08]).

8 Acknowledgment

The author wants to especially thank Roland Hafner from Cognit GmbH for the
important initial ignition for writing this article.

References

[Ber95] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I and
II. Athena Scientific, Belmont, Massachusetts, 1995.

[BSWR12] Manuel Blum, Jost Tobias Springenberg, Jan Wlfing, and Martin Ried-
miller. A Learned Feature Descriptor for Object Recognition in RGB-D
Data. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), St. Paul, Minnesota, USA, 2012.

[BT96] D. P. Bertsekas and J. N. Tsitsiklis. Neuro Dynamic Programming. Athena
Scientific, Belmont, Massachusetts, 1996.

[DRP09] Marc P. Deisenroth, Carl E. Rasmussen, and Jan Peters. Gaussian Process
Dynamic Programming. Neurocomputing, 72(7–9):1508–1524, March 2009.

[EPG05] D. Ernst and and L. Wehenkel P. Geurts. Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6:503–556, 2005.

[GLR11] T. Gabel, C. Lutz, and M. Riedmiller. Improved Neural Fitted Q Itera-
tion Applied to a Novel Computer Gaming and Learning Benchmark. In
In Proceedings of the IEEE Symposium on Approximate Dynamic Program-
ming and Reinforcement Learning (ADPRL 2011), Paris France, April 2011.
IEEE Press.

[GR07] T. Gabel and M. Riedmiller. On Experiences in a Complex and Competitive
Gaming Domain: Reinforcement Learning Meets RoboCup. In Proceedings
of the IEEE Symposium on Computational Intelligence and Games, Hon-
olulu, USA, 2007.

[GR08] T. Gabel and M. Riedmiller. Adaptive Reactive Job-Shop Scheduling with
Reinforcement Learning Agents. International Journal of Information Tech-
nology and Intelligent Computing, 24(4), 2008.

[HR03] Roland Hafner and Martin Riedmiller. Reinforcement learning on an om-
nidirectional mobile robot. In Proceedings of the 2003 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2003), Las
Vegas, 2003.

[HR07] Roland Hafner and Martin Riedmiller. Neural Reinforcement Learning Con-
trollers for a Real Robot Application. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA 07), Rome, Italy,
2007.

[HR11] Roland Hafner and Martin Riedmiller. Reinforcement learning in feedback
control. Machine Learning, 27(1):55–74, 2011. 10.1007/s10994-011-5235-x.

[HSSU08] Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, and Steffen
Udluft. Safe exploration for reinforcement learning. In ESANN, pages 143–
148, 2008.

[KR09] T. Kietzmann and M. Riedmiller. The Neuro Slot Car Racer: Reinforcement
Learning in a Real World Setting. In Proceedings of the Int. Conference
on Machine Learning Applications (ICMLA09), Miami, Florida, Dec 2009.
Springer.

[LBOM98] Y. LeCun, L. Bottou, G. Orr, and K.-R. Müller. Efficient backprop. In
G. Orr and K.-R. Müller, editors, Neural Networks: Tricks of the trade,
pages 5 –50. Springer, 1998.

[LR10a] Sascha Lange and Martin Riedmiller. Deep auto-encoder neural networks
in reinforcement learning. In International Joint Conference on Neural Net-
works (IJCNN 2010), Barcelona, Spain, 2010.

[LR10b] Sascha Lange and Martin Riedmiller. Deep learning of visual control poli-
cies. In European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN 2010), Brugge, Belgium, 2010.

[RB93] M. Riedmiller and H. Braun. A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm. In H. Ruspini, editor, Proceedings
of the IEEE International Conference on Neural Networks (ICNN), pages
586 – 591, San Francisco, 1993.

[RG11] Martin Riedmiller and Thomas Gabel. Distributed Policy Search Reinforce-
ment Learning for Job-Shop Scheduling Tasks. TPRS International Journal
of Production Research, 50(1), 2012. Available online from May, 2011.

[RGHL09] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange. Reinforcement Learning
for Robot Soccer. Autonomous Robots, 27(1):55–74, 2009.

[RHLL08] Martin Riedmiller, Roland Hafner, Sascha Lange, and Martin Lauer. Learn-
ing to Dribble on a Real Robot by Success and Failure. In Proceedings of the
2008 International Conference on Robotics and Automation (ICRA 2008),
Pasadena CA, 2008. Springer. video presentation.

[Rie96] M. Riedmiller. Learning to control dynamic systems. In Robert Trappl, ed-
itor, Proceedings of the 13th. European Meeting on Cybernetics and Systems
Research - 1996 (EMCSR ’96), Vienna, 1996.

[Rie97] M. Riedmiller. Generating continuous control signals for reinforcement con-
trollers using dynamic output elements. In European Symposium on Artifi-
cial Neural Networks, ESANN’97, Bruges, 1997.

[Rie05a] M. Riedmiller. Neural Fitted Q Iteration - First experiences with a data effi-
cient neural Reinforcement Learning Method. In Lecture Notes in Computer
Science: Proc. of the European Conference on Machine Learning, ECML
2005, pages 317–328, Porto, Portugal, October 2005.

[Rie05b] M. Riedmiller. Neural reinforcement learning to swing-up and balance a
real pole. In Proc. of the Int. Conference on Systems, Man and Cybernetics,
2005, Big Island, USA, October 2005.

[RLV12] Martin Riedmiller, Sascha Lange, and Arne Voigtlnder. Autonomous re-
inforcement learning on raw visual input data in a real world application.
In Proceedings of the International Joint Conference on Neural Networks,
Brisbane, Australia, 2012.

[RMD07] Martin Riedmiller, Mike Montemerlo, and Hendrik Dahlkamp. Learning to
Drive in 20 Minutes. In Proceedings of the FBIT 2007 conference., Jeju,
Korea, 2007. Springer. Best Paper Award.

[SB98] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, Cam-
bridge, MA, 1998.

[Sut96] R. S. Sutton. Generalization in reinforcement learning: Successful examples
using sparse coarse coding. In D. S. Touretzky, M. C. Mozer, and M. E.
Hasselmo, editors, Advances in Neural Information Processing Systems 8,
pages 1038–1044, Cambridge, MA, 1996. MIT Press.

[TR07] S. Timmer and M. Riedmiller. Fitted Q Iteration with CMACs. In Pro-
ceedings of the IEEE International Symposium on Approximate Dynamic
Programming and Reinforcement Learning (ADPRL 07), Honolulu, USA,
2007.

[Wat89] C. J. Watkins. Learning from Delayed Rewards. Phd thesis, Cambridge
University, 1989.

[WNLL07] Thomas J. Walsh, Ali Nouri, Lihong Li, and Michael L. Littman. Planning
and learning in environments with delayed feedback. In Proceedings of the
18th European conference on Machine Learning, ECML ’07, pages 442–453,
Berlin, Heidelberg, 2007. Springer-Verlag.

