
Learning (near) Time Optimal Control
for Flexible Robot Joints

Martin Riedmiller
Machine Learning Lab

University of Freiburg, Germany
Email: riedmiller@informatik.uni-freiburg.de

Roland Hafner
Cognit GmbH

Balgheim, Germany
Email: rhafner@cognit-labs.de

Abstract—This short paper describes the application of a
model free, learning neural controller, that is able to optimally
control a flexible joint of a robot arm.

I. INTRODUCTION

Robotic arms with series elastic actuators [3] provide me-
chanical compliance in the joint actuation that can help to
simplify many challenging real world tasks like force control
in constrained situations or movements with high dynamic
and speed [6]. The decoupling of the joints and the motor
gearboxes by using some kind of torsion or linear springs
results in a low-pass filtering of force and torque peaks
that helps to provide an increased safety of operation, for
example for the human interaction with the robot arm. On
the other hand the introduction of elastic elements in the
joint actuation results in a reduced torque bandwidth and
the demand for damping the oscillations that increases the
controller complexity, especially in the context of time optimal
control.

Our work tackles the set-point feedback and trajectory
control of a single compliant joint. Instead of designing a
model based controller by hand we use a Reinforcement
Learning approach to learn the controller by pure interaction
with the system. The applied controller learning scheme is
based on a neural batch RL approach, the Neural Fitted Q-
Iteration (NFQ) [4] and its extension to continuous action
spaces (NFQCA, see [2, 1]). This approach proved to be
successful in learning high quality control policies for different
challenging nonlinear control tasks [2].

In this contribution we want to present first results of our
recent work, where we applied the learning RL controller
to time optimal feedback control of a simulation model of
a single elastic joint and link combination. In contrast to
earlier publications we show also that is possible to learn a
trajectory tracking control for this application. Especially we
want to show that the amount of required interaction time
and the quality of the learned control law, the robustness and
the generalization, fits the requirements to apply the learning
controller to the real system.

A. Simulation Model of a Single Joint

The used simulation model is a combination of a DC motor,
that is coupled to a link with length l and mass m by a torsion

spring. Figure 1 shows the schematic setup. We assume that the
joint position, θj , and the motor position, θm, can be measured
independently. This is realized in most elastic joint setups by
using independent encoders on the motor and link side. Along
these values the motor current, cm, the angular velocity of the
joint, θ̇j , and the velocity of the motor, ˙θm, are available by
measurement or numeric filtering.

Fig. 1: The model of a single flexible link under gravity.

A simplified dynamic model of the setup in Figure 1 can
be formulated as a dynamic system with state vector, X =
(θm, ˙θm, cm, θj , θ̇j) = (x1, x2, x3, x4, x5), and the dynamic
equations 1 - 5.

ẋ1 = ˙θm (1)

ẋ2 =
1

Jm
(ktcm − c(θm − θj)) (2)

ẋ3 =
1

Lm
(Rmcm − ke ˙θm + u) (3)

ẋ4 = θ̇j (4)

ẋ5 =
1

Jl
(c ∗ (θm − θj) (5)

−kf ∗ (˙θm − θ̇j) + 0.5lmg sin(θj))

Which is a combination of a DC motor with inertia Jm
(inclusive gearbox), torque constant kt, back emf constant ke,
electrical resistance Rm and inductance Lm, a torsion spring
with spring constant c and viscous friction factor kf , and a
link with length l, inertia Jl and mass m.

A controller for this setup has to influence the joint position
θj according to a given set-point or a set-point trajectory

by setting adequate voltage u to the motor. As the motor is
coupled to the link by a torsion spring, the controller has to
compensate not only for the gravity in each position, but also
for the spring torques.

II. LEARNING TIME OPTIMAL SET-POINT CONTROL

In time optimal set-point control the dynamic system should
be controlled so that the variable under control, θj , reaches a
given set-point, θdj , in a minimum of time steps, and retains it.
A deviation of the variable under control and the set-point can
occur due to disturbances on the system or the change of the
set-point and should be canceled by the control law, given the
physical constraints of the system (e.g. a maximal voltage).

With NFQCA (see [2] and [1]), we use a model free
batch Reinforcement Learning scheme, that is based on Q-
learning [5], in combination with neural networks. When used
in a growing batch configuration, this approach allows to
learn high quality policies from scratch, with almost no a
priori knowledge, just by interaction, for a broad range of
applications and sequential decision problems. For learning
time optimal set-point control, we use this approach with a
very general time optimal and precise formulation of the direct
cost signal, that is described in [2].

In the Reinforcement Learning setup the state of the MDP
is a combination of the full state of the dynamic system under
control and the set-point. In our context we defined the state
of the MDP as s = (θm, ˙θm, cm, θj , θ̇j , e = θdj − θj). For
simplicity the action a of the MDP is defined in the interval
[−1, 1], where the applied voltage is defined as u = a ∗ vcc,
with vcc is the maximal available voltage.

The learning process starts with a random policy and
interacts with the system in sequences of 150 time steps length
(control interval is 2 milliseconds). Following the principles
of the growing batch scheme after each sequence a new
neural policy is computed with NFQCA. The learning process
required 92 iterations (interaction sequences and learning
updates) to compute a high quality control law for this
application. This corresponds to less than 30 seconds of pure
interaction time with the system that was used for training the
controller.

For comparison of the control performance of the learned
controller, we use a hand designed reference controller, that
we designed for a real robot application. The reference con-
troller is a combination of a PID controller with state based
compensation of gravity and spring torques, that was tuned for
the simulated link. Figure 2 shows a control trajectory of the
fully tuned reference controller. As can be seen in comparison
to Figure 3, the learned controller can accelerate the system
much faster and is able to damp it, to reach the set-point in
fewer time-steps than the reference controller.

To quantify the performance of a controller we apply it to
50 randomly chosen set-points. To benchmark the controller,
we report the average number of time steps, N̄ , the controller
needs to reach the given set-points, the average steady-state
error ¯e∞, and the maximal steady-state error, e∞max, over

-0.6

-0.4

-0.2

 0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [s]

desired
motor

link

Fig. 2: Trajectory of the manually tuned reference controller.

the given set-points (see [2] for a precise definition of the
performance citeria.)

-0.6

-0.4

-0.2

 0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [s]

desired
motor

link

Fig. 3: Trajectory of the learned controller showing signifi-
cantly improved acceleration and damping.

The results of benchmarking the learned controller against
the reference controller in table I, shows that the learned
controller is much faster and more precise than the reference
controller.

N̄ ¯e∞ e∞max
reference controller 135.40 0.015 0.028
learned controller 40.88 0.003 0.006

TABLE I: Results of a controller benchmark.

1) Controller Robustness: As an example we show the
robustness of the controller against variations of the link mass.
The learning controller was trained on a system with a link
mass of m = 1kg, to which also the reference controller was
tuned.

learned controller reference controller
m N̄ ¯e∞ e∞max N̄ ¯e∞ e∞max
0.5 44.56 0.002 0.004 136.50 0.017 0.031
1.0 40.88 0.003 0.006 135.40 0.015 0.028
1.5 41.56 0.003 0.007 154.84 0.020 0.037
2.0 52.58 0.007 0.010 682.34 0.143 0.214
2.5 63.02 0.011 0.019 x x x
3.0 81.28 0.014 0.026 x x x

TABLE II: Controller benchmark with varying mass of link.
Both controllers were trained/tuned for a system of m = 1kg.

Table II shows the results of the benchmarking of the
controller performance under variation of the link mass. The
classical reference controller has a limited operating range
and gets completely unstable at 2.5kg. In contrast the learned

controller shows a remarkable robustness, that we observed in
many other applications. To further enhance the robustness of
the controller against varying parameters, one way to go is
to include the variation of the parameters already during the
training phase (see [1] for details).

III. LEARNING TRAJECTORY CONTROL

For most real world application, the set-point control of
the system is not sufficient and has to be replaced by a
trajectory control scheme. In our setup, for the trajectory
control, a desired trajectory is given by θdj and θ̇dj . For a
first demonstration we use sinusoidal set-point trajectories.
The learned set-point controller of section II will fail to
follow precisely a continuously changing set-point trajectory,
as the controller learned to reach a given set-point only
in steady state condition (see Figure 4). To formulate the

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

desired
motor

link

Fig. 4: The learned controller of section II in trajectory control.

complete trajectory control problem, the state of the MDP has
to be extended, to reflect the additional source of dynamic
in the MDP. In our case, we extended the MDP state to
s = (θm, ˙θm, cm, θj , θ̇j , θ̇dj , e = θdj − θj). For the learning
procedure we used only two sinusoidal trajectories, with the
same amplitude (0.5 rad), that have periods of 1.6s and 0.8s,
around the rest position. The length of the trajectories were set
to 300 time steps and the control interval set to 5 milliseconds.
All other parameters of the learning process (including neural
network sizes and topologies) are the same as for the last
section.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

desired
motor

link

Fig. 5: The learned trajectory controller.

After only 120 sequences (3 minutes of pure interaction
time) the new controller produced a high quality control law
for the two given trajectories. In Figure 5 an example trajec-
tory is given for the learned controller. The mean absolute

trajectory error over the whole training trajectories (over 1000
time steps) is ¯e∞ = 0.002 (e∞max = 0.003).

To test the generalization capabilities of the learned con-
troller, we run 50 sequences with amplitudes in the range of
[0.2, 0.6] and periods in the range [0.6, 2.0], with the learned
controller. On this test set, the controller showed a mean
absolute trajectory error of ¯e∞ = 0.004 (e∞max = 0.007).
This shows, that the controller learned a good control law
for a wide range of trajectories, only from two simple training
trajectories.

IV. CONCLUSION

We presented recent results of learning time-optimal and
trajectory control of a flexible robot joint with a neural
batch Reinforcement Learning approach. The controller learns
purely by interaction with the system and has no prior knowl-
edge of the system dynamics or system parameters. As we
showed for a simulated joint, the learned control laws are of
high quality, generalize well over a broad working area and
can be learned in reasonable time. Also a good robustness of
the learned controller was observed.

The main idea for application of this controller is to learn it
directly on a robot arm, built of a series of links. Ongoing
research will show if it is possible to find representative
configurations, dynamic situations and trajectories to learn
such a robust controller for each individual link in reasonable
time. The results obtained so far a highly encouraging.

V. ACKNOWLEDGEMENTS

Parts of this work have been developped in conjunction with
a research cooperation between HARTING KGaA, Espelkamp
and Cognit GmbH, Balgheim. The authors therefore wish to
thank HARTING KGaA for giving permission to publish this
work.

REFERENCES

[1] Roland Hafner. Dateneffiziente selbstlernende neuronale
Regler. PhD thesis, Univerity of Osnabrueck, 11 2009.

[2] Roland Hafner and Martin Riedmiller. Reinforcement
learning in feedback control. Machine Learning, pages
1–33, 2011. ISSN 0885-6125. URL http://dx.doi.org/10.
1007/s10994-011-5235-x.

[3] G. A. Pratt and M. M. Williamson. Series elastic actuators.
iros, 01, 1995. URL http://dx.doi.org/10.1109/IROS.1995.
525827.

[4] Martin Riedmiller. Neural fitted q iteration - first experi-
ences with a data efficient neural reinforcement learning
method. In Proc. of the European Conference on Machine
Learning, ECML 2005, Porto, Portugal, October 2005.

[5] Christopher J. Watkins and Peter Dayan. Q-learning.
Machine Learning, 8(3):279–292, May 1992.

[6] S. Wolf and G. Hirzinger. A new variable stiffness design:
Matching requirements of the next robot generation. In
Robotics and Automation, 2008. ICRA 2008. IEEE Inter-
national Conference on, pages 1741–1746. IEEE, 2008.

http://dx.doi.org/10.1007/s10994-011-5235-x
http://dx.doi.org/10.1007/s10994-011-5235-x
http://dx.doi.org/10.1007/s10994-011-5235-x
http://dx.doi.org/10.1007/s10994-011-5235-x
http://dx.doi.org/10.1109/IROS.1995.525827
http://dx.doi.org/10.1109/IROS.1995.525827

	Introduction
	Simulation Model of a Single Joint

	Learning Time Optimal Set-Point Control
	Controller Robustness

	Learning Trajectory Control
	Conclusion
	Acknowledgements

