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Overview of Today’s Lecture: Concept Learning

read T. Mitchell, Machine Learning, chapter 2

• Learning from examples

• General-to-specific ordering over hypotheses

• Version spaces and candidate elimination algorithm

• Picking new examples

• The need for inductive bias

Note: simple approach assuming no noise, illustrates key concepts
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Introduction

• Assume a given domain, e.g. objects, animals, etc.

• A concept can be seen as a subset of the domain, e.g. birds⊆animals

• Task: acquire intensional concept description from training examples

• Generally we can’t look at all objects in the domain
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Training Examples for EnjoySport

• Examples: “Days at which my friend Aldo enjoys his favorite water sport”

• Result: classifier for days = description of Aldo’s behavior

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

What is the general concept?
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Representing Hypotheses

• Many possible representations

• in the following: h is conjunction of constraints on attributes

• Each constraint can be

– a specfic value (e.g., Water = Warm)
– don’t care (e.g., “Water =?”)
– no value allowed (e.g.,“Water=∅”)

• For example,

Sky AirTemp Humid Wind Water Forecst
〈Sunny ? ? Strong ? Same〉

• We write h(x) = 1 for a day x, if x satisfies the description

• Note that much more expressive languages exists
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Most General/Most Specific Hypothesis

• Most general hypothesis: (?, ?, ?, ?, ?)

• Most specific hypothesis: (∅, ∅, ∅, ∅, ∅)
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Prototypical Concept Learning Task

• Given:

– Instances X: Possible days, each described by the attributes

Sky, AirTemp, Humidity, Wind, Water, Forecast

– Target concept c: EnjoySport : X → {0, 1}
– Hypotheses H: Conjunctions of literals. E.g.

〈?, Cold,High, ?, ?, ?〉.

– Training examples D: Positive and negative examples of the target
function

〈x1, c(x1)〉, . . . 〈xm, c(xm)〉

• Determine: A hypothesis h in H with h(x) = c(x) for all x in D.
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The Inductive Learning Hypothesis

The inductive learning hypothesis: Any hypothesis found to approximate the
target function well over a sufficiently large set of training examples will also
approximate the target function well over other unobserved examples.

• I.e. the training set needs to ’represent’ the whole domain (which may be
infinite)

• Even if we have a ’good’ training set, we can still construct bad hypotheses!
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Concept Learning as Search

• The hypothesis representation language defines a potentially large space

• Learning can be viewed as a task of searching this space

• Assume, that Sky has three possible values, and each of the remaining
attributes has 2 possible values

• → Instance space constains 96 distinct examples

• Hypothesis space contains 5120 syntactically different hypothesis

• What about the semantically different ones?

• Different learning algorithms search this space in different ways!
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General-to-Specific Ordering of Hyothesis

• Many algorithms rely on ordering of hypothesis

• Consider
h1 = (Sunny, ?, ?, Strong, ?, ?)

and
h2 = (Sunny, ?, ?, ?, ?, ?)
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General-to-Specific Ordering of Hyothesis

• Many algorithms rely on ordering of hypothesis

• Consider
h1 = (Sunny, ?, ?, Strong, ?, ?)

and
h2 = (Sunny, ?, ?, ?, ?, ?)

• h2 is more general than h1!

• How to formalize this?
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General-to-Specific Ordering of Hyothesis

• Many algorithms rely on ordering of hypothesis

• Consider
h1 = (Sunny, ?, ?, Strong, ?, ?)

and
h2 = (Sunny, ?, ?, ?, ?, ?)

• h2 is more general than h1!

• How to formalize this?

Definition h2 is more general than h1, if h1(x) = 1 implies h2(x) = 1. In
symbols

h2 ≥g h1
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Instance, Hypotheses, and More-General-Than
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General-to-Specific Ordering of Hyothesis

• ≥g does not depend on the concept to be learned

• It defines a partial order over the set of hypotheses

• strictly-more-general than: >g

• more-specific-than ≤g

• Basis for the learning algorithms presented in the following!

• Find-S:

– Start with most specific hypothesis (∅, ∅, ∅, ∅, ∅, ∅)
– Generalize if positive example is not covered!
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Find-S Algorithm

• Initialize h to the most specific hypothesis in H

• For each positive training instance x

– For each attribute constraint ai in h

∗ If the constraint ai in h is satisfied by x

∗ Then do nothing
∗ Else replace ai in h by the next more general constraint that is satisfied

by x

• Output hypothesis h
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Hypothesis Space Search by Find-S

Instances X Hypotheses H

Specific

General

1x
2

x

x 3

x4

h0

h1

h2,3

h
4

+ +

+

x   = <Sunny Warm High Strong Cool Change>, +
4

x   = <Sunny Warm Normal Strong Warm Same>, +1
x   = <Sunny Warm High  Strong Warm Same>, +2
x   = <Rainy Cold High Strong Warm Change>, -3

h   = <Sunny Warm Normal Strong Warm Same>1
h   = <Sunny Warm  ?  Strong Warm Same>2

h   = <Sunny Warm  ?  Strong  ?  ? >
4 

h   = <Sunny Warm ? Strong Warm Same>
3

0h   =                             <∅, ∅, ∅, ∅, ∅, ∅>




-
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The Role of Negative Examples

• Basically, the negative examples are simply ignored!

• If we assume that the true target concept c is in H (and the training data
contains no errors) then negative examples can be safely ignored.
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The Role of Negative Examples

• Basically, the negative examples are simply ignored!

• If we assume that the true target concept c is in H (and the training data
contains no errors) then negative examples can be safely ignored.

Reason:

The current hypothesis h is the most specific hypothesis consistent with the
observed positive examples.

c is in H and c is consistent with the positive examples, therefore c ≥g h (c is
more general or equal to h)

c is the true target concept and therefore will never contain any negative
example. Therefore h will not contain any negative example (by the definition
of ’more general than’)

Therefore, h will never need a revision due to a negative example
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Thoughts about Find-S

• Assume a consistent and unknown h that has generated the training set

• → Algorithm can’t tell whether it has learned the right concept because it
picks one hypothesis out of many possible ones

• Can’t tell when training data inconsistent because it ignores the negative
examples: doesn’t account for noise

• Picks a maximally specific h → is this reasonable?

• Depending on H, there might be several correct hypothesis!

• → Version spaces:

– Characterize the set of all consistent hypotheses
– ... without enumerating all of them
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Version Spaces

Definition A hypothesis h is consistent with a set of training examples D of
target concept c if and only if h(x) = c(x) for each training example 〈x, c(x)〉
in D.

Consistent(h,D) ≡ (∀〈x, c(x)〉 ∈ D) h(x) = c(x)

Definition The version space, V SH,D, with respect to hypothesis space H and
training examples D, is the subset of hypotheses from H consistent with all
training examples in D.

V SH,D ≡ {h ∈ H|Consistent(h,D)}
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The List-Then-Eliminate Algorithm:

1. V ersionSpace← a list containing every hypothesis in H

2. For each training example, 〈x, c(x)〉:

remove from V ersionSpace any hypothesis h for which h(x) 6= c(x)

3. Output the list of hypotheses in V ersionSpace

Central idea: The Version Space can be represented by the most general and
the most specific hypothesis.
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Example Version Space

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }
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Example Version Space

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

Representing Version Spaces

1. The General boundary, G, of version space V SH,D is the set of its
maximally general members that are consistent with the given training set

2. The Specific boundary, S, of version space V SH,D is the set of its
maximally specific members that are consistent with the given training set
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3. Every member of the version space lies between these boundaries

V SH,D = {h ∈ H|(∃s ∈ S)(∃g ∈ G)(g ≥ h ≥ s)}

where x ≥ y means x is more general or equal to y

proof: see Mitchell, Machine Learning, ch. 2
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Candidate Elimination Algorithm – Pos. Examples

Input: training set
Output:

• G = maximally general hypotheses in H

• S = maximally specific hypotheses in H

Algorithm:
For each training example d, do

• If d is a positive example

– Remove from G any hypothesis inconsistent with d

– For each hypothesis s in S that is not consistent with d

∗ Remove s from S

∗ Add to S all minimal generalizations h of s such that
(a) h is consistent with d, and
(b) some member of G is more general than h

∗ Remove from S any hypothesis that is more general than another
hypothesis in S
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Candidate Elimination Algorithm – Neg. Examples

• If d is a negative example

– Remove from S any hypothesis inconsistent with d

– For each hypothesis g in G that is not consistent with d

∗ Remove g from G

∗ Add to G all minimal specializations h of g such that
(a) h is consistent with d, and
(b) some member of S is more specific than h

∗ Remove from G any hypothesis that is less general than another
hypothesis in G

Note that the algorithm contains operations such that computing ’minimal
specialisations and generalisations’ of given hypothesis or identifying
nonminimal and nonmaximal hypothesis. The implementation will - of course -
depend on the specific representation of hypothesis. The algorithm can be
applied to any learning task and hypothesis space for which these operations
are well defined.
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Example Trace

{<?, ?, ?, ?, ?, ?>}

S
0
: {<Ø, Ø, Ø, Ø, Ø, Ø>}

G 0
:
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Example Trace

S 1:

S 2:

G 1, G 2:

{<Sunny, Warm, Normal, Strong, Warm, Same>}

{<Sunny, Warm, ?, Strong, Warm, Same>}

{<?, ?, ?, ?, ?, ?>}

Training examples:

  1. <Sunny, Warm, Normal, Strong, Warm, Same>,  Enjoy-Sport?=Yes

  2. <Sunny, Warm, High, Strong, Warm, Same>,     Enjoy-Sport?=Yes
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Example Trace

G 3:

  <Rainy, Cold, High, Strong, Warm, Change>,  EnjoySport=No

Training Example:

3.

S2 , S 3 : <Sunny, Warm, ?, Strong, Warm, Same>{ }

<Sunny, ?, ?, ?, ?, ?>   <?, Warm, ?, ?, ?, ?>   <?, ?, ?, ?, ?, Same>{ }

G 2: <?, ?, ?, ?, ?, ?>{ }
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Example Trace

Training Example:

EnjoySport = Yes<Sunny, Warm, High, Strong, Cool, Change>,4.

S 3: <Sunny, Warm, ?, Strong, Warm, Same>{ }

S 4: <Sunny, Warm, ?, Strong, ?, ?>{ }

G 4: <Sunny, ?, ?, ?, ?, ?>   <?, Warm, ?, ?, ?, ?> { }

G3: <Sunny, ?, ?, ?, ?, ?>   <?, Warm, ?, ?, ?, ?>   <?, ?, ?, ?, ?, Same>{ }
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Properties of the two Sets

• S can be seen as the summary of the positive examples

• Any hypothesis more general than S covers all positive examples

• More specific hypothesis fail to cover at least one pos. ex.

• G can be seen as the summary of the negative examples

• Any hypothesis more specific than G covers no previous negative example

• More general hypothesis cover at least one negative example
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Resulting Version Space

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }
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Properties

• If there is a consistent hypothesis then the algorithm will converge to
S = G = {h} when enough examples are provided

• False examples may cause the removal of the correct h

• If the examples are inconsistent, S and G become empty

• This can also happen, when the concept to be learned is not in H
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What Next Training Example?

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

• If the algorithm is allowed to select the next example, which is best?
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What Next Training Example?

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

• If the algorithm is allowed to select the next example, which is best?

ideally, choose an instance that is classified positive by half and negative by
the other half of the hypothesis in VS. In either case (positive or negative
example), this will eliminate half of the hypothesis. E.g:
〈Sunny Warm Normal Light Warm Same〉
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How Should These Be Classified?

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

• 〈Sunny Warm Normal Strong Cool Change〉

• 〈Rainy Cool Normal Light Warm Same〉

• 〈Sunny Warm Normal Light Warm Same〉
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Classification

• Classify a new example as positive or negative, if all hypotheses in the
version space agree in their classification

• Otherwise:

– Rejection or
– Majority vote

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 33



Inductive Bias

• What if target concept not contained in hypothesis space?

• Should we include every possible hypothesis?

• How does this influence the generalisation ability?
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Inductive Leap

• Induction vs. deduction (=theorem proving)

• Induction provides us with new knowledge!

• What Justifies this “Inductive Leap?”

+ 〈Sunny Warm Normal Strong Cool Change〉

+ 〈Sunny Warm Normal Light Warm Same〉

S : 〈Sunny Warm Normal ? ? ?〉

Question: Why believe we can classify the unseen

〈Sunny Warm Normal Strong Warm Same〉?

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 35



An UNBiased Learner

• Idea: Choose H that expresses every teachable concept

• I.e., H corresponds to the power set of X → |H| = 2|X|

• → much bigger than before, where |H| = 937

• Consider H ′ = disjunctions, conjunctions, negations over previous H. E.g.,

〈Sunny Warm Normal ? ? ?〉 ∨ ¬〈? ? ? ? ? Change〉

• It holds h(x) = 1 if x satisfies the logical expression.

• What are S, G in this case? (next slide)
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The Futility of Bias-Free Learning

Example: x1, x2, x3 positive, x4, x5 negative.
Then: G = {¬(x4 ∨ x5)}, S = {(x1 ∨ x2 ∨ x3)}

• S = {s}, with s = disjunction of positive examples

• G = {g}, with g = Negated disjunction of negative examples

• → Only training examples will be unambiguously classified

• Is majority vote a solution? No:
Unknown pattern will be classified positive by exactly half of the hypothesis
and negative by the other half.
Reason: If H is the power set of X, and x is some unobserved instance, then
for any h in the version space that covers x there is another hypothesis h′ in
the power set that is identical to h except for the classification of x. If h is
in the version space, then h′ will be as well, because it agrees with h on all
observed training examples.

A learner that makes no a priori assumptions regarding the identity of the
target concept has no rational basis for classifying any unseen instances.
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• Inductive bias = underyling assumptions

• These assumption explain the result of learning

• The inductive bias explains the inductive leap!
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Inductive Bias

• Concept learning algorithm L

• Instances X, target concept c

• Training examples Dc = {〈x, c(x)〉}

• Let L(xi, Dc) denote the classification assigned to the instance xi by L

after training on data Dc, e.g. EnjoySport = yes

Definition The inductive bias of L is any minimal set of assertions B such that
for any target concept c and corresponding training examples Dc

(∀xi ∈ X) [(B ∧Dc ∧ xi) ⊢ L(xi, Dc)]

where A ⊢ B means A logically entails B.

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 39



Inductive Bias for Candidate Elimination

• Assume instance xi and training set Dc

• The algorithm computes the version space

• xi is classified by unanimous voting (using the instances in the version
space); otherwise systems answers ’don’t know’

• → this way L(xi, Dc) is computed
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Inductive Bias for Candidate Elimination

• Assume instance xi and training set Dc

• The algorithm computes the version space

• xi is classified by unanimous voting (using the instances in the version
space); otherwise systems answers ’don’t know’

• → this way L(xi, Dc) is computed

• Now assume that the underlying concept c is in H

• This means that c is a member of its version space

• EnjoySport = k implies that all members of VS, including c vote for class k

• Because unanimous voting is required, k = c(xi)

• This is also the output of the algorithm L(xi, Dc)

• → The inductive bias of the Candidate Elimination Algorithm is: c is in H
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Inductive Systems and Equivalent Deductive Systems
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Three Learners with Different Biases

• Note that the inductive bias is often only implicitly encoded in the learning
algorithm

• In the general case, it’s much more difficult to determine the inductive bias

• Often properties of the learning algorithm have to be included, e.g. it’s
search strategy

• What is inductive bias of

– Rote learner: Store examples, Classify x iff it matches previously observed
example.

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 42



Three Learners with Different Biases

• Note that the inductive bias is often only implicitly encoded in the learning
algorithm

• In the general case, it’s much more difficult to determine the inductive bias

• Often properties of the learning algorithm have to be included, e.g. it’s
search strategy

• What is inductive bias of

– Rote learner: Store examples, Classify x iff it matches previously observed
example.
No inductive bias (→ no generalisation!)

– Candidate elimination algorithm
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Three Learners with Different Biases

• Note that the inductive bias is often only implicitly encoded in the learning
algorithm

• In the general case, it’s much more difficult to determine the inductive bias

• Often properties of the learning algorithm have to be included, e.g. it’s
search strategy

• What is inductive bias of

– Rote learner: Store examples, Classify x iff it matches previously observed
example.
No inductive bias (→ no generalisation!)

– Candidate elimination algorithm
c is in H (see above)

– Find-S c is in H and that all instances are negative examples unless the
opposite is entailed by its training data

A good generalisation capability of course depends on the appropriate choice of
the inductive bias!
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Summary Points

• Concept learning as search through H

• General-to-specific ordering over H

• Version space candidate elimination algorithm

• S and G boundaries characterize learner’s uncertainty

• Learner can generate useful queries

• Inductive leaps possible only if learner is biased

• Inductive learners can be modelled by equivalent deductive systems
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